
A square whose side is $2$ meters has its corners cut away so as to form an octagon with all sides equal. Then, the length of each side of the octagon in meters is:
A) $\dfrac{{\sqrt 2 }}{{\sqrt {2 + 1} }}$
B) $\dfrac{2}{{\sqrt {2 + 1} }}$
C) $\dfrac{2}{{\sqrt {2 - 1} }}$
D) $\dfrac{{\sqrt 2 }}{{\sqrt {2 - 1} }}$
Answer
570.3k+ views
Hint: In this solution, first, we have to assume a square ABCD of side’s $2$meters and mark all the sides as shown in the diagram. Now we use Pythagoras theorem in the triangle ${\rm{\Delta ALE}}$ to find the side of the triangle. Once we get the sides, we use that value to find the side of the octagon.
Complete step-by-step answer:
Let us consider ABCD to be a square of side $2$ meters. We form a regular octagon by cutting all four corners.
Let,
EF = FG = GH = HI = IJ = JK = KL = LE = $x$
By symmetry,
AE = AL = BG = BF = CH = CI = DJ = DK = ${\rm{a}}$
Using,
Pythagoras theorem in ${\rm{\Delta ALE}}$, we get
$\begin{array}{c}{\rm{L}}{{\rm{E}}^{\rm{2}}} = {\rm{A}}{{\rm{L}}^{\rm{2}}}{\rm{ + A}}{{\rm{E}}^{\rm{2}}}\\{{\rm{x}}^{\rm{2}}} = {{\rm{a}}^{\rm{2}}}{\rm{ + }}{{\rm{a}}^{\rm{2}}}\\ = {\rm{2a}}\end{array}$
Take the square root on both sides.
$ \Rightarrow {\rm{x = }}\sqrt {{\rm{2a}}} $
And,
AB $ = $ AE $ + $EF$ + $FB
$\begin{array}{l} \Rightarrow {\rm{2}} = {\rm{a + x + a}}\\ \Rightarrow {\rm{2}} = {\rm{2a + x}}\\ \Rightarrow {\rm{2a + x}} = {\rm{2}}\end{array}$
Now,
Putting the value of x in the above equation, we get
$\begin{array}{l} \Rightarrow {\rm{2a + }}\sqrt {{\rm{2a}}} = {\rm{2}}\\ \Rightarrow {\rm{a}}\left( {{\rm{2 + }}\sqrt {\rm{2}} } \right) = {\rm{2}}\\ \Rightarrow {\rm{a}}\sqrt {\rm{2}} \left( {\sqrt {{\rm{2 + 1}}} } \right) = {\rm{2}}\\ \Rightarrow {\rm{a}} = \dfrac{2}{{\sqrt {{\rm{2 + 1}}} }}\end{array}$
Thus, the length of each side of the octagon is $\dfrac{2}{{\sqrt {\rm{2}} {\rm{ + 1}}}}\,{\rm{m}}$.
Hence, the correct option is B.
Note: An octagon is a geometric shape having eight sides and eight angles, and a square is a regular quadrilateral, meaning it has four equal sides and four equal corners. It can also be defined as a rectangle, where the length of two adjacent sides is equal. The ABCD will be denoted as a square with vertices. We need to cut down all four corners of a square to create an octagon from a square.
Complete step-by-step answer:
Let us consider ABCD to be a square of side $2$ meters. We form a regular octagon by cutting all four corners.
Let,
EF = FG = GH = HI = IJ = JK = KL = LE = $x$
By symmetry,
AE = AL = BG = BF = CH = CI = DJ = DK = ${\rm{a}}$
Using,
Pythagoras theorem in ${\rm{\Delta ALE}}$, we get
$\begin{array}{c}{\rm{L}}{{\rm{E}}^{\rm{2}}} = {\rm{A}}{{\rm{L}}^{\rm{2}}}{\rm{ + A}}{{\rm{E}}^{\rm{2}}}\\{{\rm{x}}^{\rm{2}}} = {{\rm{a}}^{\rm{2}}}{\rm{ + }}{{\rm{a}}^{\rm{2}}}\\ = {\rm{2a}}\end{array}$
Take the square root on both sides.
$ \Rightarrow {\rm{x = }}\sqrt {{\rm{2a}}} $
And,
AB $ = $ AE $ + $EF$ + $FB
$\begin{array}{l} \Rightarrow {\rm{2}} = {\rm{a + x + a}}\\ \Rightarrow {\rm{2}} = {\rm{2a + x}}\\ \Rightarrow {\rm{2a + x}} = {\rm{2}}\end{array}$
Now,
Putting the value of x in the above equation, we get
$\begin{array}{l} \Rightarrow {\rm{2a + }}\sqrt {{\rm{2a}}} = {\rm{2}}\\ \Rightarrow {\rm{a}}\left( {{\rm{2 + }}\sqrt {\rm{2}} } \right) = {\rm{2}}\\ \Rightarrow {\rm{a}}\sqrt {\rm{2}} \left( {\sqrt {{\rm{2 + 1}}} } \right) = {\rm{2}}\\ \Rightarrow {\rm{a}} = \dfrac{2}{{\sqrt {{\rm{2 + 1}}} }}\end{array}$
Thus, the length of each side of the octagon is $\dfrac{2}{{\sqrt {\rm{2}} {\rm{ + 1}}}}\,{\rm{m}}$.
Hence, the correct option is B.
Note: An octagon is a geometric shape having eight sides and eight angles, and a square is a regular quadrilateral, meaning it has four equal sides and four equal corners. It can also be defined as a rectangle, where the length of two adjacent sides is equal. The ABCD will be denoted as a square with vertices. We need to cut down all four corners of a square to create an octagon from a square.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

