
A square whose side is $2$ meters has its corners cut away so as to form an octagon with all sides equal. Then, the length of each side of the octagon in meters is:
A) $\dfrac{{\sqrt 2 }}{{\sqrt {2 + 1} }}$
B) $\dfrac{2}{{\sqrt {2 + 1} }}$
C) $\dfrac{2}{{\sqrt {2 - 1} }}$
D) $\dfrac{{\sqrt 2 }}{{\sqrt {2 - 1} }}$
Answer
580.2k+ views
Hint: In this solution, first, we have to assume a square ABCD of side’s $2$meters and mark all the sides as shown in the diagram. Now we use Pythagoras theorem in the triangle ${\rm{\Delta ALE}}$ to find the side of the triangle. Once we get the sides, we use that value to find the side of the octagon.
Complete step-by-step answer:
Let us consider ABCD to be a square of side $2$ meters. We form a regular octagon by cutting all four corners.
Let,
EF = FG = GH = HI = IJ = JK = KL = LE = $x$
By symmetry,
AE = AL = BG = BF = CH = CI = DJ = DK = ${\rm{a}}$
Using,
Pythagoras theorem in ${\rm{\Delta ALE}}$, we get
$\begin{array}{c}{\rm{L}}{{\rm{E}}^{\rm{2}}} = {\rm{A}}{{\rm{L}}^{\rm{2}}}{\rm{ + A}}{{\rm{E}}^{\rm{2}}}\\{{\rm{x}}^{\rm{2}}} = {{\rm{a}}^{\rm{2}}}{\rm{ + }}{{\rm{a}}^{\rm{2}}}\\ = {\rm{2a}}\end{array}$
Take the square root on both sides.
$ \Rightarrow {\rm{x = }}\sqrt {{\rm{2a}}} $
And,
AB $ = $ AE $ + $EF$ + $FB
$\begin{array}{l} \Rightarrow {\rm{2}} = {\rm{a + x + a}}\\ \Rightarrow {\rm{2}} = {\rm{2a + x}}\\ \Rightarrow {\rm{2a + x}} = {\rm{2}}\end{array}$
Now,
Putting the value of x in the above equation, we get
$\begin{array}{l} \Rightarrow {\rm{2a + }}\sqrt {{\rm{2a}}} = {\rm{2}}\\ \Rightarrow {\rm{a}}\left( {{\rm{2 + }}\sqrt {\rm{2}} } \right) = {\rm{2}}\\ \Rightarrow {\rm{a}}\sqrt {\rm{2}} \left( {\sqrt {{\rm{2 + 1}}} } \right) = {\rm{2}}\\ \Rightarrow {\rm{a}} = \dfrac{2}{{\sqrt {{\rm{2 + 1}}} }}\end{array}$
Thus, the length of each side of the octagon is $\dfrac{2}{{\sqrt {\rm{2}} {\rm{ + 1}}}}\,{\rm{m}}$.
Hence, the correct option is B.
Note: An octagon is a geometric shape having eight sides and eight angles, and a square is a regular quadrilateral, meaning it has four equal sides and four equal corners. It can also be defined as a rectangle, where the length of two adjacent sides is equal. The ABCD will be denoted as a square with vertices. We need to cut down all four corners of a square to create an octagon from a square.
Complete step-by-step answer:
Let us consider ABCD to be a square of side $2$ meters. We form a regular octagon by cutting all four corners.
Let,
EF = FG = GH = HI = IJ = JK = KL = LE = $x$
By symmetry,
AE = AL = BG = BF = CH = CI = DJ = DK = ${\rm{a}}$
Using,
Pythagoras theorem in ${\rm{\Delta ALE}}$, we get
$\begin{array}{c}{\rm{L}}{{\rm{E}}^{\rm{2}}} = {\rm{A}}{{\rm{L}}^{\rm{2}}}{\rm{ + A}}{{\rm{E}}^{\rm{2}}}\\{{\rm{x}}^{\rm{2}}} = {{\rm{a}}^{\rm{2}}}{\rm{ + }}{{\rm{a}}^{\rm{2}}}\\ = {\rm{2a}}\end{array}$
Take the square root on both sides.
$ \Rightarrow {\rm{x = }}\sqrt {{\rm{2a}}} $
And,
AB $ = $ AE $ + $EF$ + $FB
$\begin{array}{l} \Rightarrow {\rm{2}} = {\rm{a + x + a}}\\ \Rightarrow {\rm{2}} = {\rm{2a + x}}\\ \Rightarrow {\rm{2a + x}} = {\rm{2}}\end{array}$
Now,
Putting the value of x in the above equation, we get
$\begin{array}{l} \Rightarrow {\rm{2a + }}\sqrt {{\rm{2a}}} = {\rm{2}}\\ \Rightarrow {\rm{a}}\left( {{\rm{2 + }}\sqrt {\rm{2}} } \right) = {\rm{2}}\\ \Rightarrow {\rm{a}}\sqrt {\rm{2}} \left( {\sqrt {{\rm{2 + 1}}} } \right) = {\rm{2}}\\ \Rightarrow {\rm{a}} = \dfrac{2}{{\sqrt {{\rm{2 + 1}}} }}\end{array}$
Thus, the length of each side of the octagon is $\dfrac{2}{{\sqrt {\rm{2}} {\rm{ + 1}}}}\,{\rm{m}}$.
Hence, the correct option is B.
Note: An octagon is a geometric shape having eight sides and eight angles, and a square is a regular quadrilateral, meaning it has four equal sides and four equal corners. It can also be defined as a rectangle, where the length of two adjacent sides is equal. The ABCD will be denoted as a square with vertices. We need to cut down all four corners of a square to create an octagon from a square.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

Why is 1 molar aqueous solution more concentrated than class 11 chemistry CBSE

