A spherical shell of lead, whose external diameter is$18cm$, is melted and recast into a right circular cylinder, whose height is$8cm$ and diameter is$12cm$. Determine the internal diameter of the shell.
Last updated date: 27th Mar 2023
•
Total views: 309.3k
•
Views today: 6.85k
Answer
309.3k+ views
Hint: Consider a symbols form internal radii of shell and since it is melted and recast
volume of spherical shell=volume of right circular cylinder and solve it.
So first of all we have to find the internal diameter of the shell.
So for spherical shell,
So in question it is given that the spherical shell of lead was melted and then recast into a right circular cylinder.
So now we have given the external diameter of the spherical shell of lead as$18cm$.
So we know that radius is half of diameter.
Let us assume ${{R}_{1}}$as an external radius of a spherical shell.
So external radius of spherical shell can be calculated as,
${{R}_{1}}=\dfrac{18}{2}=9cm$
So we get external radius${{R}_{1}}$as$9cm$,
So let us assume that${{R}_{2}}$is the internal radius of the spherical shell.
So for right circular cylinder,
Let us assume$H$as the height of the right circular cylinder .
It is given that the height of the right circular cylinder $H$is$8cm$.
So the diameter of the right circular cylinder is given as$12cm$.
So the radius is half of diameter.
Let us assume $R$ as the radius of the right circular cylinder.
So the radius is,
$R=\dfrac{12}{2}=6cm$
As the spherical shell is melted and recast to form a right circular cylinder.
So their volumes will be equal.
So volume of spherical shell=volume of right circular cylinder……..(1)
We know,
Volume of spherical shell$=\dfrac{4}{3}\pi (R_{1}^{3}-R_{2}^{3})$……….(2)
Volume of right circular cylinder$=\pi {{R}^{2}}H$………….(3)
So from (1), (2) and (3), we get,
$\dfrac{4}{3}\pi (R_{1}^{3}-R_{2}^{3})=\pi {{R}^{2}}H$
$\dfrac{4}{3}(R_{1}^{3}-R_{2}^{3})={{R}^{2}}H$
Now substituting the given values for ${{R}_{1}},RandH$We get,
$\begin{align}
& \dfrac{4}{3}({{9}^{3}}-R_{2}^{3})=({{6}^{2}})8 \\
& \dfrac{4}{3}({{9}^{3}}-R_{2}^{3})=36\times 8 \\
& \dfrac{4}{3}({{9}^{3}}-R_{2}^{3})=288 \\
& 4({{9}^{3}}-R_{2}^{3})=288\times 3 \\
& ({{9}^{3}}-R_{2}^{3})=\dfrac{288\times 3}{4} \\
& ({{9}^{3}}-R_{2}^{3})=216 \\
\end{align}$
Now rearranging the equation we get,
$\begin{align}
& {{9}^{3}}-216=R_{2}^{3} \\
& 729-216=R_{2}^{3} \\
& 513=R_{2}^{3} \\
\end{align}$
$\begin{align}
& R_{2}^{3}=513 \\
& {{R}_{2}}={{(513)}^{\dfrac{1}{3}}} \\
\end{align}$
So we can write ${{(513)}^{\dfrac{1}{3}}}={{(27\times 19)}^{\dfrac{1}{3}}}$we get,
$\begin{align}
& {{R}_{2}}={{(27\times 19)}^{\dfrac{1}{3}}} \\
& {{R}_{2}}={{({{3}^{3}}\times 19)}^{\dfrac{1}{3}}} \\
\end{align}$
Now taking ${{3}^{3}}$outside the bracket we get,
${{R}_{2}}=3{{(19)}^{\dfrac{1}{3}}}$
So we have got the internal radius of spherical shell${{R}_{2}}$as $3{{(19)}^{\dfrac{1}{3}}}$.
So we know that diameter is twice of radius, we get,
Let internal diameter be ${{D}_{2}}$,
So ${{D}_{2}}=2{{R}_{2}}=2\times 3{{(19)}^{\dfrac{1}{3}}}=6{{(19)}^{\dfrac{1}{3}}}$
So ${{D}_{2}}=6{{(19)}^{\dfrac{1}{3}}}cm$
So we get that the internal diameter of the spherical shell of lead is $6{{(19)}^{\dfrac{1}{3}}}cm$.
Note: Read the question in a thorough manner. It is given that the spherical shell is converted to a right
circular cylinder. You must know the formula of volume of spherical shell$=\dfrac{4}{3}\pi (R_{1}^{3}-R_{2}^{3})$and volume of right circular cylinder$=\pi {{R}^{2}}H$. Give a proper notation for internal and external radius and diameter so that you do not get confused.
volume of spherical shell=volume of right circular cylinder and solve it.
So first of all we have to find the internal diameter of the shell.
So for spherical shell,
So in question it is given that the spherical shell of lead was melted and then recast into a right circular cylinder.
So now we have given the external diameter of the spherical shell of lead as$18cm$.
So we know that radius is half of diameter.
Let us assume ${{R}_{1}}$as an external radius of a spherical shell.
So external radius of spherical shell can be calculated as,
${{R}_{1}}=\dfrac{18}{2}=9cm$
So we get external radius${{R}_{1}}$as$9cm$,
So let us assume that${{R}_{2}}$is the internal radius of the spherical shell.
So for right circular cylinder,
Let us assume$H$as the height of the right circular cylinder .
It is given that the height of the right circular cylinder $H$is$8cm$.
So the diameter of the right circular cylinder is given as$12cm$.
So the radius is half of diameter.
Let us assume $R$ as the radius of the right circular cylinder.
So the radius is,
$R=\dfrac{12}{2}=6cm$
As the spherical shell is melted and recast to form a right circular cylinder.
So their volumes will be equal.
So volume of spherical shell=volume of right circular cylinder……..(1)
We know,
Volume of spherical shell$=\dfrac{4}{3}\pi (R_{1}^{3}-R_{2}^{3})$……….(2)
Volume of right circular cylinder$=\pi {{R}^{2}}H$………….(3)
So from (1), (2) and (3), we get,
$\dfrac{4}{3}\pi (R_{1}^{3}-R_{2}^{3})=\pi {{R}^{2}}H$
$\dfrac{4}{3}(R_{1}^{3}-R_{2}^{3})={{R}^{2}}H$
Now substituting the given values for ${{R}_{1}},RandH$We get,
$\begin{align}
& \dfrac{4}{3}({{9}^{3}}-R_{2}^{3})=({{6}^{2}})8 \\
& \dfrac{4}{3}({{9}^{3}}-R_{2}^{3})=36\times 8 \\
& \dfrac{4}{3}({{9}^{3}}-R_{2}^{3})=288 \\
& 4({{9}^{3}}-R_{2}^{3})=288\times 3 \\
& ({{9}^{3}}-R_{2}^{3})=\dfrac{288\times 3}{4} \\
& ({{9}^{3}}-R_{2}^{3})=216 \\
\end{align}$
Now rearranging the equation we get,
$\begin{align}
& {{9}^{3}}-216=R_{2}^{3} \\
& 729-216=R_{2}^{3} \\
& 513=R_{2}^{3} \\
\end{align}$
$\begin{align}
& R_{2}^{3}=513 \\
& {{R}_{2}}={{(513)}^{\dfrac{1}{3}}} \\
\end{align}$
So we can write ${{(513)}^{\dfrac{1}{3}}}={{(27\times 19)}^{\dfrac{1}{3}}}$we get,
$\begin{align}
& {{R}_{2}}={{(27\times 19)}^{\dfrac{1}{3}}} \\
& {{R}_{2}}={{({{3}^{3}}\times 19)}^{\dfrac{1}{3}}} \\
\end{align}$
Now taking ${{3}^{3}}$outside the bracket we get,
${{R}_{2}}=3{{(19)}^{\dfrac{1}{3}}}$
So we have got the internal radius of spherical shell${{R}_{2}}$as $3{{(19)}^{\dfrac{1}{3}}}$.
So we know that diameter is twice of radius, we get,
Let internal diameter be ${{D}_{2}}$,
So ${{D}_{2}}=2{{R}_{2}}=2\times 3{{(19)}^{\dfrac{1}{3}}}=6{{(19)}^{\dfrac{1}{3}}}$
So ${{D}_{2}}=6{{(19)}^{\dfrac{1}{3}}}cm$
So we get that the internal diameter of the spherical shell of lead is $6{{(19)}^{\dfrac{1}{3}}}cm$.
Note: Read the question in a thorough manner. It is given that the spherical shell is converted to a right
circular cylinder. You must know the formula of volume of spherical shell$=\dfrac{4}{3}\pi (R_{1}^{3}-R_{2}^{3})$and volume of right circular cylinder$=\pi {{R}^{2}}H$. Give a proper notation for internal and external radius and diameter so that you do not get confused.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
