Answer
Verified
447.9k+ views
Hint: The sector is basically a portion of a circle which is enclosed by two radii and an arc. A sector divides the circle into two regions, namely major and minor sectors. The smaller area is known as the minor sector, whereas the region having a greater area is known as the major sector.
The area of a sector of the circle is calculated by using the formula:
Area =$\pi {r^2} \times \left( {\dfrac{\theta }{{360^\circ }}} \right)$, where ‘θ’ is the angle subtended at the centre.
Complete step by step solution:
Here, according to the question
Radius of the sector = 21 cm
Angle subtended by the arc at centre= θ = 120°
Now, we calculate the area of sector OAB
Area of the sector = $\pi {r^2}\dfrac{\theta }{{360}}$
$\begin{gathered}
= \dfrac{{22}}{7} \times 21 \times 21 \times \dfrac{{120}}{{360}} \\
= \dfrac{{22 \times 21 \times 21}}{{7 \times 3}} \\
= 462c{m^2} \\
\end{gathered} $
Therefore, the area of the sector is 462 $cm^2$
Note: If the length of the arc of the sector is given instead of the angle of the sector, then we will use the different method to calculate the area of the sector. Let the length of the arc be ‘l’. For the radius of a circle equal to r units, an arc of length r units will subtend 1 radian at the centre. Hence, it can be concluded that an arc of length ‘l’ will subtend$\dfrac{l}{r}$, the angle at the centre. So, if l is the length of the arc, r is the radius of the circle and θ is the angle subtended at the centre, then;
$\theta = \dfrac{l}{r}$, where θ is in radian. Therefore, the area of sector = $A = \dfrac{{\left( {lr} \right)}}{2}$
The area of a sector of the circle is calculated by using the formula:
Area =$\pi {r^2} \times \left( {\dfrac{\theta }{{360^\circ }}} \right)$, where ‘θ’ is the angle subtended at the centre.
Complete step by step solution:
Here, according to the question
Radius of the sector = 21 cm
Angle subtended by the arc at centre= θ = 120°
Now, we calculate the area of sector OAB
Area of the sector = $\pi {r^2}\dfrac{\theta }{{360}}$
$\begin{gathered}
= \dfrac{{22}}{7} \times 21 \times 21 \times \dfrac{{120}}{{360}} \\
= \dfrac{{22 \times 21 \times 21}}{{7 \times 3}} \\
= 462c{m^2} \\
\end{gathered} $
Therefore, the area of the sector is 462 $cm^2$
Note: If the length of the arc of the sector is given instead of the angle of the sector, then we will use the different method to calculate the area of the sector. Let the length of the arc be ‘l’. For the radius of a circle equal to r units, an arc of length r units will subtend 1 radian at the centre. Hence, it can be concluded that an arc of length ‘l’ will subtend$\dfrac{l}{r}$, the angle at the centre. So, if l is the length of the arc, r is the radius of the circle and θ is the angle subtended at the centre, then;
$\theta = \dfrac{l}{r}$, where θ is in radian. Therefore, the area of sector = $A = \dfrac{{\left( {lr} \right)}}{2}$
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths