Answer
Verified
468.3k+ views
Hint: Firstly calculate the area covered by roller during one revolution by using the formula, Surface area of roller $=\pi DL$ and then divide the complete area of ground by the value obtained from the formula to get the final answer.
Complete step-by-step answer:
To solve the problem we will write the given data first,
Diameter of roller = D = 1.4m ………………………………….. (1)
Length of roller = l = 1.4m ………………………………….. (2)
Area of Ground = 3080 sq.m. ………………………………….. (3)
To find the number of revolutions that roller will make to press the ground, first we have to calculate area pressed during one revolution and therefore we have to derive the formula of area of rolling surface only as shown below,
As we know that the roller has a cylindrical shape and therefore the formula of surface area of cylinder is given by,
Surface area of cylinder with diameter ‘D’ and height/length ‘L’ is given by,
Surface Area $=\dfrac{\pi {{D}^{2}}}{2}+\pi DL$
As we all know rolling does not require the circular surfaces of cylinder therefore the formula of surface area of roller required for rolling can be reduced to,
Surface area of roller $=\pi DL$
If we put the values of equation (1) and equation (2) in above equation we will get,
Surface area of roller $=\pi \times 1.4\times 1.4$
$\therefore $ Surface area of roller $=\pi \times 1.96$
$\therefore $ Surface area of roller $=1.96\pi $ sq.m.
As we know that the surface area of the roller required for rolling is ultimately the area pressed by it in one revolution. And therefore we can write,
Area pressed by roller in one revolution $=1.96\pi $ sq.m. ……………………………….. (4)
Now, to find the number of revolutions required to press the 3080 sq.m area we will divide it by area pressed by roller in one revolution therefore from equation (3) and equation (4) we can write,
Number of revolutions $=\dfrac{3080}{1.96\pi }$
$\therefore $ Number of revolutions $=\dfrac{3080}{1.96\times 3.142}$
$\therefore $ Number of revolutions $=\dfrac{3080}{6.15832}$
$\therefore $ Number of revolutions $=500.1$
$\therefore $ Number of revolutions $=500$
Therefore the 500 number of revolutions are required to press the ground of area 3080 sq.m.
Therefore the correct answer is Option (B)
Note: Do remember to reduce the area of two circular surfaces i. e. $\dfrac{\pi {{D}^{2}}}{2}$ OR $2\pi {{r}^{2}}$ from the surface area of roller required to press the ground and if you calculate the area with considering them then you will get the wrong answer. Also if you don’t know the formula of surface area in terms of diameter then you can derive it from the formula of it in terms of radius.
Complete step-by-step answer:
To solve the problem we will write the given data first,
Diameter of roller = D = 1.4m ………………………………….. (1)
Length of roller = l = 1.4m ………………………………….. (2)
Area of Ground = 3080 sq.m. ………………………………….. (3)
To find the number of revolutions that roller will make to press the ground, first we have to calculate area pressed during one revolution and therefore we have to derive the formula of area of rolling surface only as shown below,
As we know that the roller has a cylindrical shape and therefore the formula of surface area of cylinder is given by,
Surface area of cylinder with diameter ‘D’ and height/length ‘L’ is given by,
Surface Area $=\dfrac{\pi {{D}^{2}}}{2}+\pi DL$
As we all know rolling does not require the circular surfaces of cylinder therefore the formula of surface area of roller required for rolling can be reduced to,
Surface area of roller $=\pi DL$
If we put the values of equation (1) and equation (2) in above equation we will get,
Surface area of roller $=\pi \times 1.4\times 1.4$
$\therefore $ Surface area of roller $=\pi \times 1.96$
$\therefore $ Surface area of roller $=1.96\pi $ sq.m.
As we know that the surface area of the roller required for rolling is ultimately the area pressed by it in one revolution. And therefore we can write,
Area pressed by roller in one revolution $=1.96\pi $ sq.m. ……………………………….. (4)
Now, to find the number of revolutions required to press the 3080 sq.m area we will divide it by area pressed by roller in one revolution therefore from equation (3) and equation (4) we can write,
Number of revolutions $=\dfrac{3080}{1.96\pi }$
$\therefore $ Number of revolutions $=\dfrac{3080}{1.96\times 3.142}$
$\therefore $ Number of revolutions $=\dfrac{3080}{6.15832}$
$\therefore $ Number of revolutions $=500.1$
$\therefore $ Number of revolutions $=500$
Therefore the 500 number of revolutions are required to press the ground of area 3080 sq.m.
Therefore the correct answer is Option (B)
Note: Do remember to reduce the area of two circular surfaces i. e. $\dfrac{\pi {{D}^{2}}}{2}$ OR $2\pi {{r}^{2}}$ from the surface area of roller required to press the ground and if you calculate the area with considering them then you will get the wrong answer. Also if you don’t know the formula of surface area in terms of diameter then you can derive it from the formula of it in terms of radius.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE