A roll of newspaper of length $7000{\text{ m}}$ and thickness $0.022{\text{ cm}}$ is rolled into a solid cylinder Find its radius.
(A) $7{\text{ cm}}$
(B) $140{\text{ cm}}$
(C) $35{\text{ cm}}$
(D) $70{\text{ cm}}$
Answer
Verified
449.7k+ views
Hint: We have given the length and thickness of the newspaper this means the newspaper is in the shop of cuboid length and thickness have difficult units so we have to change in the same unit. We consider the height of a newspaper is equal to $h$. As the newspaper is rolled in the form of a cylinder in height the cylinder will be equal to bread of newspaper. Also the volume of the newspaper will be equal to the volume of the cylinder. We equal volume of both can find the radius.
Complete step-by-step answer:
We have given that the length of roll of newspaper is $7000$ and thickness is $0.022{\text{ cm}}$
It is rolled in the form of a solid cylinder. Newspapers are in the shape of a cuboid. So lengths of
$ \Rightarrow$ ${\text{cuboid (}}l{\text{) = }}7000m$
$ \Rightarrow$ $1m = 100cm$
So $7000m = 7000 \times 100cm$
Length of ${\text{cuboid (}}l{\text{) = }}700000cm$
Thickness of ${\text{cuboid (}}h{\text{) = }}0.022cm$
Let Breadth of cuboid $ = $ \[b\]
The newspaper is rolled in the shape of a cylinder. Therefore, the volume of the cylinder will be equal to the volume of the cuboid.
Also height of cylinder $ \Rightarrow $ Breadth of cuboid$ = $ b
Let $'r'$ be the radius of cylinder
Volume of cylinder = volume of cuboid
$ \Rightarrow$$\pi {r^2}b = l \times h \times b$
$ \Rightarrow$$\pi {r^2} = l \times h$
Value of $\pi $ is equal to $\dfrac{{22}}{7}$
$ \Rightarrow$$\dfrac{{22}}{7} \times {r^2} = 700000 \times 0.022$
$ \Rightarrow$${r^2} = \dfrac{{700000 \times 22 \times 7}}{{22 \times 1000}}$
$ \Rightarrow$${r^2} = 700 \times 7$
$ \Rightarrow$${r^2} = 4900$
Taking square root on both sides
$ \Rightarrow$$r = \sqrt {4900} {\text{ }} \Rightarrow 70$
$ \Rightarrow$$r = 70cm$
Radius of cylinder $ = 70{\text{ cm}}$
Option (D) is correct.
Note: Volume is the quantity of three dimensional space enclosed by a closed surface. For example, the space that a substance or shape occupies OC contains. Volume often qualified by numerically using the SI derived unit cubic meter. Right circular cylinder is a three dimensional figure in which there are two flat ends in the shape of circles. These two faces are connected by a curved face that looks like a tube. If you make a flat net for a cylinder, it looks like a rectangle with a circle attached at each end.
Complete step-by-step answer:
We have given that the length of roll of newspaper is $7000$ and thickness is $0.022{\text{ cm}}$
It is rolled in the form of a solid cylinder. Newspapers are in the shape of a cuboid. So lengths of
$ \Rightarrow$ ${\text{cuboid (}}l{\text{) = }}7000m$
$ \Rightarrow$ $1m = 100cm$
So $7000m = 7000 \times 100cm$
Length of ${\text{cuboid (}}l{\text{) = }}700000cm$
Thickness of ${\text{cuboid (}}h{\text{) = }}0.022cm$
Let Breadth of cuboid $ = $ \[b\]
The newspaper is rolled in the shape of a cylinder. Therefore, the volume of the cylinder will be equal to the volume of the cuboid.
Also height of cylinder $ \Rightarrow $ Breadth of cuboid$ = $ b
Let $'r'$ be the radius of cylinder
Volume of cylinder = volume of cuboid
$ \Rightarrow$$\pi {r^2}b = l \times h \times b$
$ \Rightarrow$$\pi {r^2} = l \times h$
Value of $\pi $ is equal to $\dfrac{{22}}{7}$
$ \Rightarrow$$\dfrac{{22}}{7} \times {r^2} = 700000 \times 0.022$
$ \Rightarrow$${r^2} = \dfrac{{700000 \times 22 \times 7}}{{22 \times 1000}}$
$ \Rightarrow$${r^2} = 700 \times 7$
$ \Rightarrow$${r^2} = 4900$
Taking square root on both sides
$ \Rightarrow$$r = \sqrt {4900} {\text{ }} \Rightarrow 70$
$ \Rightarrow$$r = 70cm$
Radius of cylinder $ = 70{\text{ cm}}$
Option (D) is correct.
Note: Volume is the quantity of three dimensional space enclosed by a closed surface. For example, the space that a substance or shape occupies OC contains. Volume often qualified by numerically using the SI derived unit cubic meter. Right circular cylinder is a three dimensional figure in which there are two flat ends in the shape of circles. These two faces are connected by a curved face that looks like a tube. If you make a flat net for a cylinder, it looks like a rectangle with a circle attached at each end.
Recently Updated Pages
A house design given on an isometric dot sheet in an class 9 maths CBSE
How does air exert pressure class 9 chemistry CBSE
Name the highest summit of Nilgiri hills AVelliangiri class 9 social science CBSE
If log x+1x2+x624 then the values of twice the sum class 9 maths CBSE
How do you convert 245 into fraction and decimal class 9 maths CBSE
ABCD is a trapezium in which ABparallel DC and AB 2CD class 9 maths CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is the role of NGOs during disaster managemen class 9 social science CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE
What is pollution? How many types of pollution? Define it