Answer
Verified
491.7k+ views
Hint: In this question, first draw the diagram it will give a clear idea about what we have to find. Now, draw the shape that would form on revolving the triangle and then find the volume of that shape formed.
Complete step-by-step answer:
Let us first draw the right angle triangle ABC.
Now, if we rotate this triangle about the side of 5cm the solid formed will be:
CONE: A cone is a three-dimensional geometric shape that tapers smoothly from a flat base to a point called the vertex.
A cone is formed by a set of line segments, half-lines, or lines connecting a common point, the vertex, to all the points on a base that is in a plane that does not contain the vertex.
It forms a cone of radius 5cm and height 12 cm.
Let us now look at the formula for volume of a cone.
Volume of a right circular cone \[=\dfrac{\pi }{3}{{r}^{2}}h\]
Where, r is the radius of the cone.
h is the height of the cone.
Now, by substituting the respective values in the above formula we get,
\[\begin{align}
& r=5 \\
& h=12 \\
\end{align}\]
Let us assume the volume of the cone as V.
\[V=\dfrac{\pi }{3}{{r}^{2}}h\]
\[\Rightarrow V=\dfrac{\pi }{3}{{\left( 5 \right)}^{2}}\left( 12 \right)\]
Now, on simplification we get,
\[\begin{align}
& \Rightarrow V=\dfrac{\pi }{3}\times 25\times 12 \\
& \Rightarrow V=\pi \times 25\times 4 \\
& \Rightarrow V=100\pi \\
& \Rightarrow V=100\times 3.14\text{ }\left[ \because \pi =3.14 \right] \\
& \therefore V=314c{{m}^{3}} \\
\end{align}\]
Hence, the volume of the solid obtained is 314cm3 .
If it is revolved about the side 12 cm then we get,
\[\begin{align}
& r=12 \\
& h=5 \\
\end{align}\]
By substituting these in the formula of volume of a cone we get,
\[V=\dfrac{\pi }{3}{{r}^{2}}h\]
\[\Rightarrow V=\dfrac{\pi }{3}{{\left( 12 \right)}^{2}}\left( 5 \right)\]
\[\Rightarrow V=\dfrac{\pi }{3}\times 144\times 5\]
\[\Rightarrow V=\pi \times 48\times 5\]
\[\begin{align}
& \Rightarrow V=240\pi \\
& \Rightarrow V=240\times 3.14\text{ }\left[ \because \pi =3.14 \right] \\
& \therefore V=753.6c{{m}^{3}} \\
\end{align}\]
Now, the ratio of the two solids so obtained is:
\[\begin{align}
& \Rightarrow \dfrac{100\pi }{240\pi } \\
& \Rightarrow \dfrac{100}{240} \\
& \Rightarrow \dfrac{5}{12} \\
\end{align}\]
Hence, the ratio of the two solids formed is \[\dfrac{5}{12}\].
Note: It is important to note what would be the solid formed on revolving on a right angled triangle and in doing so we need to keep a note about which side it is being rotated. So, the values of radius and height changes accordingly.
We considered 5cm radius when it revolved about 5cm and then later we considered that it revolved around 12cm. But, we cannot consider to revolve it about 13cm side because if so it does not form a right circular cone.
While substituting the respective values in the given formula care should be taken because change in the substitution of radius and height in the other way causes error in the total result.
Complete step-by-step answer:
Let us first draw the right angle triangle ABC.
Now, if we rotate this triangle about the side of 5cm the solid formed will be:
CONE: A cone is a three-dimensional geometric shape that tapers smoothly from a flat base to a point called the vertex.
A cone is formed by a set of line segments, half-lines, or lines connecting a common point, the vertex, to all the points on a base that is in a plane that does not contain the vertex.
It forms a cone of radius 5cm and height 12 cm.
Let us now look at the formula for volume of a cone.
Volume of a right circular cone \[=\dfrac{\pi }{3}{{r}^{2}}h\]
Where, r is the radius of the cone.
h is the height of the cone.
Now, by substituting the respective values in the above formula we get,
\[\begin{align}
& r=5 \\
& h=12 \\
\end{align}\]
Let us assume the volume of the cone as V.
\[V=\dfrac{\pi }{3}{{r}^{2}}h\]
\[\Rightarrow V=\dfrac{\pi }{3}{{\left( 5 \right)}^{2}}\left( 12 \right)\]
Now, on simplification we get,
\[\begin{align}
& \Rightarrow V=\dfrac{\pi }{3}\times 25\times 12 \\
& \Rightarrow V=\pi \times 25\times 4 \\
& \Rightarrow V=100\pi \\
& \Rightarrow V=100\times 3.14\text{ }\left[ \because \pi =3.14 \right] \\
& \therefore V=314c{{m}^{3}} \\
\end{align}\]
Hence, the volume of the solid obtained is 314cm3 .
If it is revolved about the side 12 cm then we get,
\[\begin{align}
& r=12 \\
& h=5 \\
\end{align}\]
By substituting these in the formula of volume of a cone we get,
\[V=\dfrac{\pi }{3}{{r}^{2}}h\]
\[\Rightarrow V=\dfrac{\pi }{3}{{\left( 12 \right)}^{2}}\left( 5 \right)\]
\[\Rightarrow V=\dfrac{\pi }{3}\times 144\times 5\]
\[\Rightarrow V=\pi \times 48\times 5\]
\[\begin{align}
& \Rightarrow V=240\pi \\
& \Rightarrow V=240\times 3.14\text{ }\left[ \because \pi =3.14 \right] \\
& \therefore V=753.6c{{m}^{3}} \\
\end{align}\]
Now, the ratio of the two solids so obtained is:
\[\begin{align}
& \Rightarrow \dfrac{100\pi }{240\pi } \\
& \Rightarrow \dfrac{100}{240} \\
& \Rightarrow \dfrac{5}{12} \\
\end{align}\]
Hence, the ratio of the two solids formed is \[\dfrac{5}{12}\].
Note: It is important to note what would be the solid formed on revolving on a right angled triangle and in doing so we need to keep a note about which side it is being rotated. So, the values of radius and height changes accordingly.
We considered 5cm radius when it revolved about 5cm and then later we considered that it revolved around 12cm. But, we cannot consider to revolve it about 13cm side because if so it does not form a right circular cone.
While substituting the respective values in the given formula care should be taken because change in the substitution of radius and height in the other way causes error in the total result.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Discuss the main reasons for poverty in India
A Paragraph on Pollution in about 100-150 Words
Why is monsoon considered a unifying bond class 10 social science CBSE
Explain Anti-Poverty measures taken by the Government of India