Answer
Verified
406.2k+ views
Hint: Here we will assume the length of the piece to be \[x\] meters. Then we will find the rate per meter for the old as well as the new length. We will then form an equation based on the given information and simplify it to get a quadratic equation. We will then use the quadratic formula to get the original price. Using this, we will then find the original rate per meter.
Complete step-by-step answer:
Let us take the length of the original piece as \[x\] meters.
Cost of cloth piece of length \[x = {\rm{Rs}}.200\]
So, the rate per meter \[ = {\rm{Rs}}.\dfrac{{200}}{x}\]……………...\[\left( 1 \right)\]
It is given that the piece was 5 m longer, then
New length \[ = x + 5\] meters
The cost of the piece remains the same as given.
So, the new rate per meter \[ = {\rm{Rs}}.\dfrac{{200}}{{x + 5}}\]……………\[\left( 2 \right)\]
Next, as the difference between the costs of two pieces is 2, so the difference of equation \[\left( 1 \right)\] and \[\left( 2 \right)\] is,
\[\dfrac{{200}}{x} - \dfrac{{200}}{{x + 5}} = 2\]
Taking the L.C.M on LHS, we get
\[ \Rightarrow \dfrac{{200\left( {x + 5} \right) - 200 \times x}}{{x\left( {x + 5} \right)}} = 2\]
On cross multiplication, we get
\[\begin{array}{l} \Rightarrow 200x + 1000 - 200x = 2\left( {x\left( {x + 5} \right)} \right)\\ \Rightarrow 0 + 1000 = 2\left( {{x^2} + 5x} \right)\end{array}\]
Dividing both sides by 2, we get
\[ \Rightarrow \dfrac{{1000}}{2} = \left( {{x^2} + 5x} \right)\]
Simplifying the expression, we get
\[ \Rightarrow 500 = \left( {{x^2} + 5x} \right)\]
\[ \Rightarrow {x^2} + 5x - 500 = 0\]………...\[\left( 3 \right)\]
Now we will solve the above equation using quadratic equation formula which states:
For equation \[a{x^2} + bx + c = 0\] we use formula \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\] to get the value of\[x\].
Substituting \[a = 1,b = 5\] and \[c = - 500\] in the above formula, we get
\[x = \dfrac{{ - 5 \pm \sqrt {{5^2} - 4 \times 1 \times \left( { - 500} \right)} }}{{2 \times 1}}\]
Simplifying the equation, we get
\[\begin{array}{l}x = \dfrac{{ - 5 \pm \sqrt {25 + 2000} }}{2}\\x = \dfrac{{ - 5 \pm \sqrt {2025} }}{2}\end{array}\]
Simplifying the square root, we get
\[x = \dfrac{{ - 5 \pm 45}}{2}\]
So, we get two values of \[x\].
\[x = \dfrac{{ - 5 - 45}}{2} = \dfrac{{ - 50}}{2} = - 25\]
\[x = \dfrac{{ - 5 + 45}}{2} = \dfrac{{40}}{2} = 20\]
As the length of the piece cloth cannot be negative, so the value of \[x\] is 20 meter.
Now we will find the rate per meter by substituting the value of \[x\] in equation \[\left( 1 \right)\], therefore, we get
Rate per meter \[ = {\rm{Rs}}.\dfrac{{200}}{{20}} = {\rm{Rs}}.10\]
So the original length of the cloth is 20 meter and the original rate per meter is Rs.10.
Note:
Here, we have simplified the equation to get a quadratic equation. A quadratic equation is defined as an equation which has the highest degree of 2 and has 2 solutions. Similarly, the cubic equation is defined as an equation which has the highest degree of 3 and has 3 solutions. So, we can say that the number of solutions depends on the highest degree of the equation. It is important to frame the equation carefully as per the given information or else, we will get the wrong answer.
Complete step-by-step answer:
Let us take the length of the original piece as \[x\] meters.
Cost of cloth piece of length \[x = {\rm{Rs}}.200\]
So, the rate per meter \[ = {\rm{Rs}}.\dfrac{{200}}{x}\]……………...\[\left( 1 \right)\]
It is given that the piece was 5 m longer, then
New length \[ = x + 5\] meters
The cost of the piece remains the same as given.
So, the new rate per meter \[ = {\rm{Rs}}.\dfrac{{200}}{{x + 5}}\]……………\[\left( 2 \right)\]
Next, as the difference between the costs of two pieces is 2, so the difference of equation \[\left( 1 \right)\] and \[\left( 2 \right)\] is,
\[\dfrac{{200}}{x} - \dfrac{{200}}{{x + 5}} = 2\]
Taking the L.C.M on LHS, we get
\[ \Rightarrow \dfrac{{200\left( {x + 5} \right) - 200 \times x}}{{x\left( {x + 5} \right)}} = 2\]
On cross multiplication, we get
\[\begin{array}{l} \Rightarrow 200x + 1000 - 200x = 2\left( {x\left( {x + 5} \right)} \right)\\ \Rightarrow 0 + 1000 = 2\left( {{x^2} + 5x} \right)\end{array}\]
Dividing both sides by 2, we get
\[ \Rightarrow \dfrac{{1000}}{2} = \left( {{x^2} + 5x} \right)\]
Simplifying the expression, we get
\[ \Rightarrow 500 = \left( {{x^2} + 5x} \right)\]
\[ \Rightarrow {x^2} + 5x - 500 = 0\]………...\[\left( 3 \right)\]
Now we will solve the above equation using quadratic equation formula which states:
For equation \[a{x^2} + bx + c = 0\] we use formula \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\] to get the value of\[x\].
Substituting \[a = 1,b = 5\] and \[c = - 500\] in the above formula, we get
\[x = \dfrac{{ - 5 \pm \sqrt {{5^2} - 4 \times 1 \times \left( { - 500} \right)} }}{{2 \times 1}}\]
Simplifying the equation, we get
\[\begin{array}{l}x = \dfrac{{ - 5 \pm \sqrt {25 + 2000} }}{2}\\x = \dfrac{{ - 5 \pm \sqrt {2025} }}{2}\end{array}\]
Simplifying the square root, we get
\[x = \dfrac{{ - 5 \pm 45}}{2}\]
So, we get two values of \[x\].
\[x = \dfrac{{ - 5 - 45}}{2} = \dfrac{{ - 50}}{2} = - 25\]
\[x = \dfrac{{ - 5 + 45}}{2} = \dfrac{{40}}{2} = 20\]
As the length of the piece cloth cannot be negative, so the value of \[x\] is 20 meter.
Now we will find the rate per meter by substituting the value of \[x\] in equation \[\left( 1 \right)\], therefore, we get
Rate per meter \[ = {\rm{Rs}}.\dfrac{{200}}{{20}} = {\rm{Rs}}.10\]
So the original length of the cloth is 20 meter and the original rate per meter is Rs.10.
Note:
Here, we have simplified the equation to get a quadratic equation. A quadratic equation is defined as an equation which has the highest degree of 2 and has 2 solutions. Similarly, the cubic equation is defined as an equation which has the highest degree of 3 and has 3 solutions. So, we can say that the number of solutions depends on the highest degree of the equation. It is important to frame the equation carefully as per the given information or else, we will get the wrong answer.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE