
A person $1.65m$ tall casts $1.5m$ shadow. At the same time, a lamp posts casts a shadow of $5.4m$.Find the height of lamp post
Answer
603.3k+ views
Hint: Approach the solution by drawing the diagrams of a person and lamp posts with given data to know which concept is used.
Here a person is of $1.65m$ tall and cast shadow of $1.5m$
And also shadow of lamp post =$5.4m$
We know that the angle is the same as the incident that occurred at the same point in time.
So, here sum makes the same angle of hitting the top of the person and top of the lamppost.
Therefore they are similar triangles $\Delta ABC\& \Delta DEF$
So, as they are the same triangles then $ \Rightarrow \frac{{AB}}{{DE}} = \frac{{CB}}{{EF}}$their radius of side is also the same.
That means
$ \Rightarrow \frac{{AB}}{{DE}} = \frac{{CB}}{{EF}}$
Here let $EF = xcm$
$
\Rightarrow \frac{{1.5}}{{5.4}} = \frac{{1.65}}{x} \\
\Rightarrow x = \frac{{1.65 \times 5.4}}{{1.5}} \\
\Rightarrow x = 5.94m \\
$
Therefore height of lamppost=$5.94m$
NOTE: In this type problems plotting the diagram with proper position gives the correct answer.Here we know that the angle is the same as the incident that occurred at the same point in time. So by using this condition on two diagrams we have equated the value and on further simplification we get the answer.
Here a person is of $1.65m$ tall and cast shadow of $1.5m$
And also shadow of lamp post =$5.4m$
We know that the angle is the same as the incident that occurred at the same point in time.
So, here sum makes the same angle of hitting the top of the person and top of the lamppost.
Therefore they are similar triangles $\Delta ABC\& \Delta DEF$
So, as they are the same triangles then $ \Rightarrow \frac{{AB}}{{DE}} = \frac{{CB}}{{EF}}$their radius of side is also the same.
That means
$ \Rightarrow \frac{{AB}}{{DE}} = \frac{{CB}}{{EF}}$
Here let $EF = xcm$
$
\Rightarrow \frac{{1.5}}{{5.4}} = \frac{{1.65}}{x} \\
\Rightarrow x = \frac{{1.65 \times 5.4}}{{1.5}} \\
\Rightarrow x = 5.94m \\
$
Therefore height of lamppost=$5.94m$
NOTE: In this type problems plotting the diagram with proper position gives the correct answer.Here we know that the angle is the same as the incident that occurred at the same point in time. So by using this condition on two diagrams we have equated the value and on further simplification we get the answer.
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Who Won 36 Oscar Awards? Record Holder Revealed

The time gap between two sessions of the Parliament class 10 social science CBSE

