A letter lock consists of three rings each marked with $ 5 $ different letters. Number of maximum attempts to open the lock is:
A. $ 124 $
B. $ 125 $
C. $ 120 $
D. $ 75 $
Answer
177.3k+ views
Hint: Find the number of ways of choosing the letter for each of the three rings and then multiply the number of ways to open all the locks of the letter lock. We can also use concepts of permutations and combinations to solve such problems.
Complete step-by-step answer:
A letter lock consists of three rings each marked with $ 5 $ different letters.
As per given that the letter lock consists of three rings each marked with $ 5 $ different letters.
So, the number of ways for opening the first ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
In a similar manner, the number of ways for opening the second ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
In a similar manner, the number of ways for opening the third ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
So, the total number of ways of opening the letter lock will be the product of all the number of ways for opening the rings.
So, the number of ways for opening the letter lock is equal to $ 5 \times 5 \times 5 = 125 $ .
So, the number of maximum attempts to open the lock is equal to $ 125 $
So, the correct answer is “Option B”.
Note: Use the multiplication rule to find the number of attempts to unlock the letter lock by checking the number of ways to open each ring of the lock and then multiply the number of ways for each ring.
Complete step-by-step answer:
A letter lock consists of three rings each marked with $ 5 $ different letters.
As per given that the letter lock consists of three rings each marked with $ 5 $ different letters.
So, the number of ways for opening the first ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
In a similar manner, the number of ways for opening the second ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
In a similar manner, the number of ways for opening the third ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
So, the total number of ways of opening the letter lock will be the product of all the number of ways for opening the rings.
So, the number of ways for opening the letter lock is equal to $ 5 \times 5 \times 5 = 125 $ .
So, the number of maximum attempts to open the lock is equal to $ 125 $
So, the correct answer is “Option B”.
Note: Use the multiplication rule to find the number of attempts to unlock the letter lock by checking the number of ways to open each ring of the lock and then multiply the number of ways for each ring.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

The coordinates of the points A and B are a0 and a0 class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
