A letter lock consists of three rings each marked with $ 5 $ different letters. Number of maximum attempts to open the lock is:
A. $ 124 $
B. $ 125 $
C. $ 120 $
D. $ 75 $
Answer
Verified
452.1k+ views
Hint: Find the number of ways of choosing the letter for each of the three rings and then multiply the number of ways to open all the locks of the letter lock. We can also use concepts of permutations and combinations to solve such problems.
Complete step-by-step answer:
A letter lock consists of three rings each marked with $ 5 $ different letters.
As per given that the letter lock consists of three rings each marked with $ 5 $ different letters.
So, the number of ways for opening the first ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
In a similar manner, the number of ways for opening the second ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
In a similar manner, the number of ways for opening the third ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
So, the total number of ways of opening the letter lock will be the product of all the number of ways for opening the rings.
So, the number of ways for opening the letter lock is equal to $ 5 \times 5 \times 5 = 125 $ .
So, the number of maximum attempts to open the lock is equal to $ 125 $
So, the correct answer is “Option B”.
Note: Use the multiplication rule to find the number of attempts to unlock the letter lock by checking the number of ways to open each ring of the lock and then multiply the number of ways for each ring.
Complete step-by-step answer:
A letter lock consists of three rings each marked with $ 5 $ different letters.
As per given that the letter lock consists of three rings each marked with $ 5 $ different letters.
So, the number of ways for opening the first ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
In a similar manner, the number of ways for opening the second ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
In a similar manner, the number of ways for opening the third ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
So, the total number of ways of opening the letter lock will be the product of all the number of ways for opening the rings.
So, the number of ways for opening the letter lock is equal to $ 5 \times 5 \times 5 = 125 $ .
So, the number of maximum attempts to open the lock is equal to $ 125 $
So, the correct answer is “Option B”.
Note: Use the multiplication rule to find the number of attempts to unlock the letter lock by checking the number of ways to open each ring of the lock and then multiply the number of ways for each ring.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE