Answer
Verified
419.1k+ views
Hint: Find the number of ways of choosing the letter for each of the three rings and then multiply the number of ways to open all the locks of the letter lock. We can also use concepts of permutations and combinations to solve such problems.
Complete step-by-step answer:
A letter lock consists of three rings each marked with $ 5 $ different letters.
As per given that the letter lock consists of three rings each marked with $ 5 $ different letters.
So, the number of ways for opening the first ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
In a similar manner, the number of ways for opening the second ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
In a similar manner, the number of ways for opening the third ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
So, the total number of ways of opening the letter lock will be the product of all the number of ways for opening the rings.
So, the number of ways for opening the letter lock is equal to $ 5 \times 5 \times 5 = 125 $ .
So, the number of maximum attempts to open the lock is equal to $ 125 $
So, the correct answer is “Option B”.
Note: Use the multiplication rule to find the number of attempts to unlock the letter lock by checking the number of ways to open each ring of the lock and then multiply the number of ways for each ring.
Complete step-by-step answer:
A letter lock consists of three rings each marked with $ 5 $ different letters.
As per given that the letter lock consists of three rings each marked with $ 5 $ different letters.
So, the number of ways for opening the first ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
In a similar manner, the number of ways for opening the second ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
In a similar manner, the number of ways for opening the third ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
So, the total number of ways of opening the letter lock will be the product of all the number of ways for opening the rings.
So, the number of ways for opening the letter lock is equal to $ 5 \times 5 \times 5 = 125 $ .
So, the number of maximum attempts to open the lock is equal to $ 125 $
So, the correct answer is “Option B”.
Note: Use the multiplication rule to find the number of attempts to unlock the letter lock by checking the number of ways to open each ring of the lock and then multiply the number of ways for each ring.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Change the following sentences into negative and interrogative class 10 english CBSE
Casparian strips are present in of the root A Epiblema class 12 biology CBSE