
A letter lock consists of three rings each marked with $ 5 $ different letters. Number of maximum attempts to open the lock is:
A. $ 124 $
B. $ 125 $
C. $ 120 $
D. $ 75 $
Answer
553.2k+ views
Hint: Find the number of ways of choosing the letter for each of the three rings and then multiply the number of ways to open all the locks of the letter lock. We can also use concepts of permutations and combinations to solve such problems.
Complete step-by-step answer:
A letter lock consists of three rings each marked with $ 5 $ different letters.
As per given that the letter lock consists of three rings each marked with $ 5 $ different letters.
So, the number of ways for opening the first ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
In a similar manner, the number of ways for opening the second ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
In a similar manner, the number of ways for opening the third ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
So, the total number of ways of opening the letter lock will be the product of all the number of ways for opening the rings.
So, the number of ways for opening the letter lock is equal to $ 5 \times 5 \times 5 = 125 $ .
So, the number of maximum attempts to open the lock is equal to $ 125 $
So, the correct answer is “Option B”.
Note: Use the multiplication rule to find the number of attempts to unlock the letter lock by checking the number of ways to open each ring of the lock and then multiply the number of ways for each ring.
Complete step-by-step answer:
A letter lock consists of three rings each marked with $ 5 $ different letters.
As per given that the letter lock consists of three rings each marked with $ 5 $ different letters.
So, the number of ways for opening the first ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
In a similar manner, the number of ways for opening the second ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
In a similar manner, the number of ways for opening the third ring is equal to $ 5 $ as it is marked with $ 5 $ different letters.
So, the total number of ways of opening the letter lock will be the product of all the number of ways for opening the rings.
So, the number of ways for opening the letter lock is equal to $ 5 \times 5 \times 5 = 125 $ .
So, the number of maximum attempts to open the lock is equal to $ 125 $
So, the correct answer is “Option B”.
Note: Use the multiplication rule to find the number of attempts to unlock the letter lock by checking the number of ways to open each ring of the lock and then multiply the number of ways for each ring.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

