
A is twice as good as B and together they finish a piece of work in 14 days. In how many days can A alone finish the work?
A. 12
B. 15
C. 17
D. 21
Answer
580.5k+ views
Hint: Here, we will first calculate A’s one day work and B’s one day work by assuming A takes x days and B take 2x day, and equate them with one day work when both A and B do the same work together. Then solve the equation obtained to get the number of days taken by A to complete the work alone.
Complete step by step answer:
Given, A is twice good as B to complete the work.
Therefore, B takes twice the number of days taken by A to complete the work.
Let A take x days to complete the work, then according to question, B takes 2x days to complete the same work.
Also given that both A and B together complete the work in 14 days.
Work done in one day = Reciprocal of days taken to complete the total work
A’s one day work = $\dfrac{1}{x}$
B’s one day work = $\dfrac{1}{{2x}}$
(A + B)’s one day work = $\dfrac{1}{{14}}$
According to the question,
$\dfrac{1}{x} + \dfrac{1}{{2x}} = \dfrac{1}{{14}}$
Solving equation,
$\dfrac{{2 + 1}}{{2x}} = \dfrac{1}{{14}}$
\[ \Rightarrow \dfrac{3}{{2x}} = \dfrac{1}{{14}}\]
On cross-multiplying, we get
$2x = 42$
$ \Rightarrow x = \dfrac{{42}}{2} = 21$
Therefore, A takes 21 days to complete the work, and B takes 2x i.e. 2 × 21 = 42 days to complete the work.
Hence, the correct option is (D).
Note:
In this type of question, always calculate and compare one day's work by taking reciprocal of the total time taken to do the work. As if a particular work is done in x days and the work done in one day will be $\dfrac{1}{x}$ part of the total work. Never calculate by considering the number of days to complete the total work. And also after finding the unknown value, but that value in the equation formed as it must satisfy the equation.
Complete step by step answer:
Given, A is twice good as B to complete the work.
Therefore, B takes twice the number of days taken by A to complete the work.
Let A take x days to complete the work, then according to question, B takes 2x days to complete the same work.
Also given that both A and B together complete the work in 14 days.
Work done in one day = Reciprocal of days taken to complete the total work
A’s one day work = $\dfrac{1}{x}$
B’s one day work = $\dfrac{1}{{2x}}$
(A + B)’s one day work = $\dfrac{1}{{14}}$
According to the question,
$\dfrac{1}{x} + \dfrac{1}{{2x}} = \dfrac{1}{{14}}$
Solving equation,
$\dfrac{{2 + 1}}{{2x}} = \dfrac{1}{{14}}$
\[ \Rightarrow \dfrac{3}{{2x}} = \dfrac{1}{{14}}\]
On cross-multiplying, we get
$2x = 42$
$ \Rightarrow x = \dfrac{{42}}{2} = 21$
Therefore, A takes 21 days to complete the work, and B takes 2x i.e. 2 × 21 = 42 days to complete the work.
Hence, the correct option is (D).
Note:
In this type of question, always calculate and compare one day's work by taking reciprocal of the total time taken to do the work. As if a particular work is done in x days and the work done in one day will be $\dfrac{1}{x}$ part of the total work. Never calculate by considering the number of days to complete the total work. And also after finding the unknown value, but that value in the equation formed as it must satisfy the equation.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

10 examples of evaporation in daily life with explanations

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

On the outline map of India mark the following appropriately class 10 social science. CBSE

Why does India have a monsoon type of climate class 10 social science CBSE

