
A hemispherical bowl of internal radius 15cm contains a liquid. The liquid is to be filled into cylindrical-shaped bottles of diameter 5cm and height 6cm. How many bottles are necessary to empty the bowl?
Answer
606.9k+ views
Hint: Here we go through by simply finding the volume of firs hemispherical ball by formula $\dfrac{2}{3}\pi {r^3}$ and then divide it by the volume of cylindrical shape bottle that we find using $\pi {r^2}h$. To find out the number of bottles that are used.
Complete step-by-step answer:
According to the problem.
Given that,
Radius of hemispherical bowl, R = 15 cm.
Hence the volume of hemispherical bowl $ = \dfrac{2}{3}\pi {R^3}$ . As we know the volume of the sphere is $\dfrac{4}{3}\pi {R^3}$ so for the hemisphere it is divided by two.
$\therefore $ Volume of hemispherical bowl$ = \dfrac{2}{3}\pi {R^3}$
$ \Rightarrow \dfrac{2}{3} \times \dfrac{{22}}{7} \times 15 \times 15 \times 15$
And now for the bottle it is given that,
Height of the bottle (h) =6 cm.
Diameter of the cylindrical bottles (d) =5 cm.
Then radius, r$ = \dfrac{d}{2} = \dfrac{5}{2} = 2.5$cm
And we know that the volume of the cylinder is $\pi {r^2}h$
$\therefore $Volume of the cylindrical bottle$ = \pi {r^2}h$
$ \Rightarrow \dfrac{{22}}{7} \times 2.5 \times 2.5 \times 6$
Let the number of bottles that empty the bowl be (n).
Then the total volume of bottles is $n \times \dfrac{{22}}{7} \times 2.5 \times 2.5 \times 6$ that is equal to the volume of the bowl.
$ \Rightarrow n \times \dfrac{{22}}{7} \times 2.5 \times 2.5 \times 6 = \dfrac{2}{3} \times \dfrac{{22}}{7} \times 15 \times 15 \times 15$
$ \Rightarrow n = \dfrac{{\dfrac{2}{3} \times \dfrac{{22}}{7} \times 15 \times 15 \times 15}}{{\dfrac{{22}}{7} \times 2.5 \times 2.5 \times 6}} = 60$
Hence, the bottles that are necessary to empty the bowl are 60.
Note: Whenever we face such a type of question the key concept for solving the question is first calculate the total volume of the bowl by the data given in question. Then find out the volume of one bottle with the help of the data given in the question. Then assume there (n) bottles are used to empty the bowl. Now multiply the volume of one bottle to (n) to find out the total volume of the bottle then equate this value with the volume of the bowl to find the value of (n).
Complete step-by-step answer:
According to the problem.
Given that,
Radius of hemispherical bowl, R = 15 cm.
Hence the volume of hemispherical bowl $ = \dfrac{2}{3}\pi {R^3}$ . As we know the volume of the sphere is $\dfrac{4}{3}\pi {R^3}$ so for the hemisphere it is divided by two.
$\therefore $ Volume of hemispherical bowl$ = \dfrac{2}{3}\pi {R^3}$
$ \Rightarrow \dfrac{2}{3} \times \dfrac{{22}}{7} \times 15 \times 15 \times 15$
And now for the bottle it is given that,
Height of the bottle (h) =6 cm.
Diameter of the cylindrical bottles (d) =5 cm.
Then radius, r$ = \dfrac{d}{2} = \dfrac{5}{2} = 2.5$cm
And we know that the volume of the cylinder is $\pi {r^2}h$
$\therefore $Volume of the cylindrical bottle$ = \pi {r^2}h$
$ \Rightarrow \dfrac{{22}}{7} \times 2.5 \times 2.5 \times 6$
Let the number of bottles that empty the bowl be (n).
Then the total volume of bottles is $n \times \dfrac{{22}}{7} \times 2.5 \times 2.5 \times 6$ that is equal to the volume of the bowl.
$ \Rightarrow n \times \dfrac{{22}}{7} \times 2.5 \times 2.5 \times 6 = \dfrac{2}{3} \times \dfrac{{22}}{7} \times 15 \times 15 \times 15$
$ \Rightarrow n = \dfrac{{\dfrac{2}{3} \times \dfrac{{22}}{7} \times 15 \times 15 \times 15}}{{\dfrac{{22}}{7} \times 2.5 \times 2.5 \times 6}} = 60$
Hence, the bottles that are necessary to empty the bowl are 60.
Note: Whenever we face such a type of question the key concept for solving the question is first calculate the total volume of the bowl by the data given in question. Then find out the volume of one bottle with the help of the data given in the question. Then assume there (n) bottles are used to empty the bowl. Now multiply the volume of one bottle to (n) to find out the total volume of the bottle then equate this value with the volume of the bowl to find the value of (n).
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

