
A heap of wheat is in the form of a cone whose diameter is 10.5 m and height is 3 m. Find its volume. The heap is to be covered by canvas to protect it from rain. Find the area of the canvas required.
Answer
566.4k+ views
Hint: First of all, we should find the radius of the cone. We know that the volume of the cone is equal to V if r is the radius of the cone and h is the height of the cone, then \[V=\dfrac{1}{3}\pi {{r}^{2}}h\]. By using this formula, we can find the volume of the cone. We know that the curved surface area of the cone is equal to A if r is the radius of the cone, h is the height of the cone and l is the slant height of the cone, then \[A=\pi rl\] where \[l=\sqrt{{{r}^{2}}+{{h}^{2}}}\]. By using this formula, we can find the area of the canvas.
Complete step-by-step solution:
From the question, it is clear that a heap of wheat is in the form of a cone whose diameter is 10.5 m and the height is 3 m.
We know that the volume of the cone is equal to V if r is the radius of the cone and h is the height of the cone, then \[V=\dfrac{1}{3}\pi {{r}^{2}}h\].
We were given that the diameter of the cone is equal to 10.5 cm.
Let us assume the diameter of the cone is equal to d.
\[\Rightarrow d=10.5....(1)\]
We know that if r is the radius of the cone and d is the diameter of the cone, then \[d=2r\].
Now let us assume the radius of the cone is equal to r.
\[\Rightarrow 10.5=2r\]
By using cross multiplication, we get
\[\begin{align}
& \Rightarrow r=\dfrac{10.5}{2} \\
& \Rightarrow r=5.25.....(2) \\
\end{align}\]
We were given that the height of the cone is equal to 3m.
Let us assume the height of the cone is equal to h.
\[\Rightarrow h=3......(3)\]
Let us assume the volume of the cone is equal to V.
We know that the volume of the cone is equal to V if r is the radius of the cone and h is the height of the cone, then \[V=\dfrac{1}{3}\pi {{r}^{2}}h\].
\[\begin{align}
& \Rightarrow V=\dfrac{1}{3}\pi {{\left( 5.25 \right)}^{2}}\left( 3 \right) \\
& \Rightarrow V=86.59.....(4) \\
\end{align}\]
From equation (4), it is clear that the volume of the cone is equal to \[86.59c{{m}^{3}}\].
Now we should find the area of the canvas.
We know that the curved surface area of the cone is equal to A if r is the radius of the cone, h is the height of the cone and l is the slant height of the cone, then \[A=\pi rl\] where \[l=\sqrt{{{r}^{2}}+{{h}^{2}}}\].
So, let us assume l is the slant height of the cone.
\[\begin{align}
& \Rightarrow l=\sqrt{{{\left( 3 \right)}^{2}}+{{\left( 5.25 \right)}^{2}}} \\
& \Rightarrow l=\sqrt{36.5625} \\
& \Rightarrow l=6.04669.....(5) \\
\end{align}\]
From equation (5), it is clear that the slant height of the cone is equal to 6.04669 m.
Let us assume the curved surface area of the cone is equal to A.
\[\begin{align}
& \Rightarrow A=\pi \left( 5.25 \right)\left( 6.04669 \right) \\
& \Rightarrow A=99.756.......(6) \\
\end{align}\]
From equation (6), it is clear that the area of the canvas is equal to \[99.756{{m}^{2}}\].
Note: Students may assume that the curved surface area of the cone is equal to A if r is the radius of the cone, h is the height of the cone, then \[A=\pi rh\]. Students may also assume that that the volume of the cone is equal to V if r is the radius of the cone, h is the height of the cone and l is the slant height of the cone, then \[V=\dfrac{1}{3}\pi {{r}^{2}}l\] where \[l=\sqrt{{{r}^{2}}+{{h}^{2}}}\]. But we know that these are incorrect. So, these misconceptions should be avoided.
Complete step-by-step solution:
From the question, it is clear that a heap of wheat is in the form of a cone whose diameter is 10.5 m and the height is 3 m.
We know that the volume of the cone is equal to V if r is the radius of the cone and h is the height of the cone, then \[V=\dfrac{1}{3}\pi {{r}^{2}}h\].
We were given that the diameter of the cone is equal to 10.5 cm.
Let us assume the diameter of the cone is equal to d.
\[\Rightarrow d=10.5....(1)\]
We know that if r is the radius of the cone and d is the diameter of the cone, then \[d=2r\].
Now let us assume the radius of the cone is equal to r.
\[\Rightarrow 10.5=2r\]
By using cross multiplication, we get
\[\begin{align}
& \Rightarrow r=\dfrac{10.5}{2} \\
& \Rightarrow r=5.25.....(2) \\
\end{align}\]
We were given that the height of the cone is equal to 3m.
Let us assume the height of the cone is equal to h.
\[\Rightarrow h=3......(3)\]
Let us assume the volume of the cone is equal to V.
We know that the volume of the cone is equal to V if r is the radius of the cone and h is the height of the cone, then \[V=\dfrac{1}{3}\pi {{r}^{2}}h\].
\[\begin{align}
& \Rightarrow V=\dfrac{1}{3}\pi {{\left( 5.25 \right)}^{2}}\left( 3 \right) \\
& \Rightarrow V=86.59.....(4) \\
\end{align}\]
From equation (4), it is clear that the volume of the cone is equal to \[86.59c{{m}^{3}}\].
Now we should find the area of the canvas.
We know that the curved surface area of the cone is equal to A if r is the radius of the cone, h is the height of the cone and l is the slant height of the cone, then \[A=\pi rl\] where \[l=\sqrt{{{r}^{2}}+{{h}^{2}}}\].
So, let us assume l is the slant height of the cone.
\[\begin{align}
& \Rightarrow l=\sqrt{{{\left( 3 \right)}^{2}}+{{\left( 5.25 \right)}^{2}}} \\
& \Rightarrow l=\sqrt{36.5625} \\
& \Rightarrow l=6.04669.....(5) \\
\end{align}\]
From equation (5), it is clear that the slant height of the cone is equal to 6.04669 m.
Let us assume the curved surface area of the cone is equal to A.
\[\begin{align}
& \Rightarrow A=\pi \left( 5.25 \right)\left( 6.04669 \right) \\
& \Rightarrow A=99.756.......(6) \\
\end{align}\]
From equation (6), it is clear that the area of the canvas is equal to \[99.756{{m}^{2}}\].
Note: Students may assume that the curved surface area of the cone is equal to A if r is the radius of the cone, h is the height of the cone, then \[A=\pi rh\]. Students may also assume that that the volume of the cone is equal to V if r is the radius of the cone, h is the height of the cone and l is the slant height of the cone, then \[V=\dfrac{1}{3}\pi {{r}^{2}}l\] where \[l=\sqrt{{{r}^{2}}+{{h}^{2}}}\]. But we know that these are incorrect. So, these misconceptions should be avoided.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Our national song Vande Mataram was taken from which class 10 social science CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE

