
A girl is on the beach with her father. She spots a swimmer drowning. She shouts to her father who is 50 m due west of her. Her father is 10 m nearer to a boat than the girl. If her father uses the boat to reach the swimmer, he has to travel a distance 126 m from that boat. At the same time, the girl spots a man riding a watercraft who is 98 m away from the boat. The man on the water craft is due east of the swimmer. How far must the man travel to rescue the swimmer?
Answer
513.3k+ views
Hint: Use the property of similarity of triangles to solve this problem
Two triangles are similar if at least two angles of one triangle are equal to any two angles of the other triangle; this is known as Angle-Angle (AA) similarity.
Two triangles are similar if any two sides of the triangles are in proportion and the angles between those sides are equal; this is known as Side-Angle-Side (SAS) similarity.
Complete step by step solution:
According to the question we get the required figure
Let A be the place where her father is standing
B is the position of boat
C is the place where girl is standing
D is the position of watercraft
E is the position of swimmer
Here we have to find the distance ED
Here, BC = x meter; AB = (x-10) meter
Consider ∆ABC and ∆DBE
$\angle ABC = \angle DBE$ (Vertically opposite angles)
$\angle BAC = \angle BDE$ (Alternate angles)
Using AA similarity, $\Delta ABC \sim \Delta DBE$
$\dfrac{{AB}}{{DB}} = \dfrac{{BC}}{{BE}} = \dfrac{{AC}}{{ED}}$
So,$\dfrac{{AB}}{{DB}} = \dfrac{{BC}}{{BE}}$
From the figure
$\begin{gathered}
\dfrac{{x - 10}}{{98}} = \dfrac{x}{{126}} \\
126x - 1260 = 98x \\
28x = 1260 \\
x = 45m \\
\end{gathered} $
∴BC = 45 m
Also, $\dfrac{{BC}}{{BE}} = \dfrac{{AC}}{{ED}}$
$\begin{gathered}
ED = \dfrac{{AC \times BE}}{{BC}} \\
ED = \dfrac{{50 \times 126}}{{45}} \\
ED = 140m \\
\end{gathered} $
∴Man has to travel 140 m to rescue the swimmer
Note: The similarity of any two triangles can be proved by using any other postulates also provided they satisfy the given condition of similarity.
Two triangles are similar if at least two angles of one triangle are equal to any two angles of the other triangle; this is known as Angle-Angle (AA) similarity.
Two triangles are similar if any two sides of the triangles are in proportion and the angles between those sides are equal; this is known as Side-Angle-Side (SAS) similarity.
Complete step by step solution:
According to the question we get the required figure

Let A be the place where her father is standing
B is the position of boat
C is the place where girl is standing
D is the position of watercraft
E is the position of swimmer
Here we have to find the distance ED
Here, BC = x meter; AB = (x-10) meter
Consider ∆ABC and ∆DBE
$\angle ABC = \angle DBE$ (Vertically opposite angles)
$\angle BAC = \angle BDE$ (Alternate angles)
Using AA similarity, $\Delta ABC \sim \Delta DBE$
$\dfrac{{AB}}{{DB}} = \dfrac{{BC}}{{BE}} = \dfrac{{AC}}{{ED}}$
So,$\dfrac{{AB}}{{DB}} = \dfrac{{BC}}{{BE}}$
From the figure
$\begin{gathered}
\dfrac{{x - 10}}{{98}} = \dfrac{x}{{126}} \\
126x - 1260 = 98x \\
28x = 1260 \\
x = 45m \\
\end{gathered} $
∴BC = 45 m
Also, $\dfrac{{BC}}{{BE}} = \dfrac{{AC}}{{ED}}$
$\begin{gathered}
ED = \dfrac{{AC \times BE}}{{BC}} \\
ED = \dfrac{{50 \times 126}}{{45}} \\
ED = 140m \\
\end{gathered} $
∴Man has to travel 140 m to rescue the swimmer
Note: The similarity of any two triangles can be proved by using any other postulates also provided they satisfy the given condition of similarity.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Gautam Buddha was born in the year A581 BC B563 BC class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
