
A dice is rolled and a coin is tossed simultaneously. What is the probability of getting a head and an odd number?
$
(a){\text{ }}\dfrac{1}{3} \\
(a){\text{ }}\dfrac{1}{4} \\
(a){\text{ }}\dfrac{1}{2} \\
(a){\text{ }}\dfrac{2}{3} \\
$
Answer
595.5k+ views
Hint- In this problem we are rolling up a dice and tossing a coin simultaneously. We have to find the probability of getting a head and an odd number, so write all the possible sample cases that the event of rolling a dice and throwing up a coin can have. Amongst these all possible events just take out the one with an odd number and head. Then use the basic probability formula to reach the answer.
Complete step-by-step answer:
Let ${\text{E}}$ be the event of getting a head and an odd number after rolling up a dice and throwing up a coin simultaneously.
So total possible sample points for event E will be (1, H), (1, T), (2, H), (2, T), (3, H), (3, T), (4, H), (4, T), (5, H), (5, T), (6, H), (6, T).
Thus ${\text{n(S) = 12}}$……………………… (1)
Now the favorable cases for event E will be the one having head and an odd number, so they are (1, H), (3, H), (5, H).
Thus ${\text{n(E) = 3}}$…………………….. (2)
Now using the basic formula of probability that probability of an event A is ${\text{P(A) = }}\dfrac{{{\text{favorable outcomes}}}}{{{\text{total number of outcomes}}}} = \dfrac{{{\text{n(A)}}}}{{{\text{n(S)}}}}$………………………… (3)
So probability of event E will be${\text{P(E)}}$, using equation (1)
${\text{P}}\left( {\text{E}} \right) = \dfrac{{{\text{n(E)}}}}{{{\text{n(S)}}}}$………………… (4)
On substituting the values from equation (1) and (2) we get,
${\text{P}}\left( {\text{E}} \right) = \dfrac{3}{{12}} = \dfrac{1}{4}$
So the probability of getting a head and an odd number after rolling up a dice and throwing up a coin simultaneously is $\dfrac{1}{4}$.
Thus option (b) is the right answer.
Note – Whenever we face such types of problems the key concept is to have the understanding of the basic probability formula. This along with the all possible sample cases with the favorable cases as per the question requirement will help us to get the answer.
Complete step-by-step answer:
Let ${\text{E}}$ be the event of getting a head and an odd number after rolling up a dice and throwing up a coin simultaneously.
So total possible sample points for event E will be (1, H), (1, T), (2, H), (2, T), (3, H), (3, T), (4, H), (4, T), (5, H), (5, T), (6, H), (6, T).
Thus ${\text{n(S) = 12}}$……………………… (1)
Now the favorable cases for event E will be the one having head and an odd number, so they are (1, H), (3, H), (5, H).
Thus ${\text{n(E) = 3}}$…………………….. (2)
Now using the basic formula of probability that probability of an event A is ${\text{P(A) = }}\dfrac{{{\text{favorable outcomes}}}}{{{\text{total number of outcomes}}}} = \dfrac{{{\text{n(A)}}}}{{{\text{n(S)}}}}$………………………… (3)
So probability of event E will be${\text{P(E)}}$, using equation (1)
${\text{P}}\left( {\text{E}} \right) = \dfrac{{{\text{n(E)}}}}{{{\text{n(S)}}}}$………………… (4)
On substituting the values from equation (1) and (2) we get,
${\text{P}}\left( {\text{E}} \right) = \dfrac{3}{{12}} = \dfrac{1}{4}$
So the probability of getting a head and an odd number after rolling up a dice and throwing up a coin simultaneously is $\dfrac{1}{4}$.
Thus option (b) is the right answer.
Note – Whenever we face such types of problems the key concept is to have the understanding of the basic probability formula. This along with the all possible sample cases with the favorable cases as per the question requirement will help us to get the answer.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

