A cylindrical tub of radius 5 cm and length 9.8 cm is full of water. A solid in the form of a right circular cone mounted on a hemisphere is immersed in the tub. If the radius of the hemisphere is 3.5 cm and the height of the cone outside the hemisphere is 5 cm, find the volume of the water left in the tub. (Take $\pi = \dfrac{{22}}{7}$)
Last updated date: 17th Mar 2023
•
Total views: 306.9k
•
Views today: 7.88k
Answer
306.9k+ views
Hint- Here, we will be using the formulas for finding the volume of a cylinder, a hemisphere and a cone.
Given, radius of cylindrical tub $R = 5\,{\text{cm}}$
Length or height of cylindrical tub
Radius of hemisphere of the solid toy $r = 3.5{\text{ cm}}$
Height of cone outside the hemisphere of the solid toy $h = 5{\text{ cm}}$
As we know that volume of a cylinder with radius $R$ and height $H$ is given by ${{\text{V}}_{{\text{cy}}}} = \pi {R^2}H$
Also, volume of a hemisphere with a radius is given by ${{\text{V}}_{\text{h}}} = \left( {\dfrac{2}{3}} \right)\pi {r^3}$
Also, volume of the cone with a base radius $r$ and height $h$ is given by ${{\text{V}}_{{\text{co}}}} = \left( {\dfrac{1}{3}} \right)\pi {r^2}h$
Also given that the cylindrical tub is full of water which means that the complete volume of the cylindrical tub consists of the volume occupied by the solid toy and the volume occupied by the water.
Therefore, Volume of the water left in tubTotal volume of the cylindrical tub$ - $Volume of the solid toy
$ \Rightarrow $ Volume of the water left in tub$ = $Total volume of the cylindrical tub(Volume of hemisphere$ + $Volume of the cone)
$ \Rightarrow $ Volume of the water left in tub$ = \pi {R^2}H - \left[ {\left( {\dfrac{2}{3}} \right)\pi {r^3} + \left( {\dfrac{1}{3}} \right)\pi {r^2}h} \right] = \pi {R^2}H - \left[ {\dfrac{{2\pi {r^3} + \pi {r^2}h}}{3}} \right]$
Volume of the water left in tub $ = \dfrac{{22}}{7} \times {\left( 5 \right)^2} \times 9.8 - \left[ {\dfrac{{2\left( {\dfrac{{22}}{7}} \right) \times {{\left( {3.5} \right)}^3} + \left( {\dfrac{{22}}{7}} \right) \times {{\left( {3.5} \right)}^2} \times 5}}{3}} \right] = 770 - 154 = 616{\text{ c}}{{\text{m}}^3}$
Hence, the volume of the water left in the tub is 616 ${\text{ c}}{{\text{m}}^2}$.
Note- In this particular problem, we have assumed that the hemisphere with a cone is fully immersed in the water present in the cylindrical tub. Here, when a solid toy with the shape of a hemisphere having a cone at the top is immersed in a cylindrical tub full of water, some of the water present in the cylindrical tub gets out.
Given, radius of cylindrical tub $R = 5\,{\text{cm}}$
Length or height of cylindrical tub
Radius of hemisphere of the solid toy $r = 3.5{\text{ cm}}$
Height of cone outside the hemisphere of the solid toy $h = 5{\text{ cm}}$
As we know that volume of a cylinder with radius $R$ and height $H$ is given by ${{\text{V}}_{{\text{cy}}}} = \pi {R^2}H$
Also, volume of a hemisphere with a radius is given by ${{\text{V}}_{\text{h}}} = \left( {\dfrac{2}{3}} \right)\pi {r^3}$
Also, volume of the cone with a base radius $r$ and height $h$ is given by ${{\text{V}}_{{\text{co}}}} = \left( {\dfrac{1}{3}} \right)\pi {r^2}h$
Also given that the cylindrical tub is full of water which means that the complete volume of the cylindrical tub consists of the volume occupied by the solid toy and the volume occupied by the water.
Therefore, Volume of the water left in tubTotal volume of the cylindrical tub$ - $Volume of the solid toy
$ \Rightarrow $ Volume of the water left in tub$ = $Total volume of the cylindrical tub(Volume of hemisphere$ + $Volume of the cone)
$ \Rightarrow $ Volume of the water left in tub$ = \pi {R^2}H - \left[ {\left( {\dfrac{2}{3}} \right)\pi {r^3} + \left( {\dfrac{1}{3}} \right)\pi {r^2}h} \right] = \pi {R^2}H - \left[ {\dfrac{{2\pi {r^3} + \pi {r^2}h}}{3}} \right]$
Volume of the water left in tub $ = \dfrac{{22}}{7} \times {\left( 5 \right)^2} \times 9.8 - \left[ {\dfrac{{2\left( {\dfrac{{22}}{7}} \right) \times {{\left( {3.5} \right)}^3} + \left( {\dfrac{{22}}{7}} \right) \times {{\left( {3.5} \right)}^2} \times 5}}{3}} \right] = 770 - 154 = 616{\text{ c}}{{\text{m}}^3}$
Hence, the volume of the water left in the tub is 616 ${\text{ c}}{{\text{m}}^2}$.
Note- In this particular problem, we have assumed that the hemisphere with a cone is fully immersed in the water present in the cylindrical tub. Here, when a solid toy with the shape of a hemisphere having a cone at the top is immersed in a cylindrical tub full of water, some of the water present in the cylindrical tub gets out.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
