
A conical solid block is exactly fitted inside the cubical box of side ‘a’ then the volume of the conical solid block is $\dfrac{{4\pi {a^{3n}}}}{3}$. Is this statement true? Justify your answer.
Answer
620.4k+ views
Hint: In this problem we will first find the volume of the solid cone and the volume of the cubical box to check if the given statement is true or false.
Complete step-by-step answer:
Now, we will first calculate the volume of the cubical box. The side of cubical box is a, so the volume of cubical box,
Volume of cubical box = ${(side)^3}$ = ${a^3}$.
Now, according to the question, if the solid conical block is exactly fitted inside the cubical box, then we can see that the radius (r) = $\dfrac{a}{2}$ and height (h) = a.
So, volume of conical solid block = $\dfrac{{\pi {r^2}h}}{3}$ = $\dfrac{{\pi {{\left( {\dfrac{a}{2}} \right)}^2}a}}{3}$ = $\dfrac{{\pi {a^3}}}{{12}}$.
So, the given statement is not true because, the given volume of conical block is greater than the volume of cubical block in which the conical block is fitted which is not possible. The correct volume of solid conical block fitted inside the box is $\dfrac{{\pi {a^3}}}{{12}}$.
Note: In such a type of question first check whether the given statement is true or not by finding the exact volume. It is also very important that you read the question properly to find the correct parameters to find the volume. Apply the exact formula to get the correct answer.
Complete step-by-step answer:
Now, we will first calculate the volume of the cubical box. The side of cubical box is a, so the volume of cubical box,
Volume of cubical box = ${(side)^3}$ = ${a^3}$.
Now, according to the question, if the solid conical block is exactly fitted inside the cubical box, then we can see that the radius (r) = $\dfrac{a}{2}$ and height (h) = a.
So, volume of conical solid block = $\dfrac{{\pi {r^2}h}}{3}$ = $\dfrac{{\pi {{\left( {\dfrac{a}{2}} \right)}^2}a}}{3}$ = $\dfrac{{\pi {a^3}}}{{12}}$.
So, the given statement is not true because, the given volume of conical block is greater than the volume of cubical block in which the conical block is fitted which is not possible. The correct volume of solid conical block fitted inside the box is $\dfrac{{\pi {a^3}}}{{12}}$.
Note: In such a type of question first check whether the given statement is true or not by finding the exact volume. It is also very important that you read the question properly to find the correct parameters to find the volume. Apply the exact formula to get the correct answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

