A conical solid block is exactly fitted inside the cubical box of side ‘a’ then the volume of the conical solid block is $\dfrac{{4\pi {a^{3n}}}}{3}$. Is this statement true? Justify your answer.
Answer
383.7k+ views
Hint: In this problem we will first find the volume of the solid cone and the volume of the cubical box to check if the given statement is true or false.
Complete step-by-step answer:
Now, we will first calculate the volume of the cubical box. The side of cubical box is a, so the volume of cubical box,
Volume of cubical box = ${(side)^3}$ = ${a^3}$.
Now, according to the question, if the solid conical block is exactly fitted inside the cubical box, then we can see that the radius (r) = $\dfrac{a}{2}$ and height (h) = a.
So, volume of conical solid block = $\dfrac{{\pi {r^2}h}}{3}$ = $\dfrac{{\pi {{\left( {\dfrac{a}{2}} \right)}^2}a}}{3}$ = $\dfrac{{\pi {a^3}}}{{12}}$.
So, the given statement is not true because, the given volume of conical block is greater than the volume of cubical block in which the conical block is fitted which is not possible. The correct volume of solid conical block fitted inside the box is $\dfrac{{\pi {a^3}}}{{12}}$.
Note: In such a type of question first check whether the given statement is true or not by finding the exact volume. It is also very important that you read the question properly to find the correct parameters to find the volume. Apply the exact formula to get the correct answer.
Complete step-by-step answer:
Now, we will first calculate the volume of the cubical box. The side of cubical box is a, so the volume of cubical box,
Volume of cubical box = ${(side)^3}$ = ${a^3}$.

Now, according to the question, if the solid conical block is exactly fitted inside the cubical box, then we can see that the radius (r) = $\dfrac{a}{2}$ and height (h) = a.
So, volume of conical solid block = $\dfrac{{\pi {r^2}h}}{3}$ = $\dfrac{{\pi {{\left( {\dfrac{a}{2}} \right)}^2}a}}{3}$ = $\dfrac{{\pi {a^3}}}{{12}}$.
So, the given statement is not true because, the given volume of conical block is greater than the volume of cubical block in which the conical block is fitted which is not possible. The correct volume of solid conical block fitted inside the box is $\dfrac{{\pi {a^3}}}{{12}}$.
Note: In such a type of question first check whether the given statement is true or not by finding the exact volume. It is also very important that you read the question properly to find the correct parameters to find the volume. Apply the exact formula to get the correct answer.
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is 1 divided by 0 class 8 maths CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Convert compound sentence to simple sentence He is class 10 english CBSE

India lies between latitudes and longitudes class 12 social science CBSE

Why are rivers important for the countrys economy class 12 social science CBSE

Distinguish between Khadar and Bhangar class 9 social science CBSE
