
A committee of $ 5 $ is to be formed out of $ 6 $ gents and $ 4 $ ladies. In how many ways this can be done, if at most two ladies are included?
Answer
555.9k+ views
Hint: we find the possible combination of forming a committee. We will add these combinations by considering the ladies in group as zero ladies, one ladies and 2 ladies. We use a formula of combination which is $ {}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} $ .
Complete step-by-step answer:
We have to choose a committee of $ 5 $ persons from given that people are $ 6 $ gents and $ 4 $ ladies
The possible way of forming this committee are
There are $ 5 $ gents and $ 0 $ ladies
$ 4 $ gents and $ 1 $ lady
$ 3 $ gents and $ 2 $ ladies
By considering these cases we can find the number of combinations,
The number of combinations of $ 5 $ gents and $ 0 $ ladies is $ {}^6{C_5} \times {}^4{C_0} $
Which can further simplified as \[\dfrac{{6!}}{{5!\left( {6 - 5} \right)!}} \times \dfrac{{4!}}{{0!\left( {4 - 0} \right)!}}\]
Putting the values of factorial then we have,
\[ = \dfrac{{6!}}{{5!1!}} \times \dfrac{{4!}}{{0!4!}} = 6 \times 1 = 6\]
The number of combinations of $ 4 $ gents and $ 1 $ lady is $ {}^6{C_4} \times {}^4{C_1} $
Which can further simplified as \[\dfrac{{6!}}{{4!\left( {6 - 4} \right)!}} \times \dfrac{{4!}}{{1!\left( {4 - 1} \right)!}}\]
Putting the values of factorial then we have,
\[ = \dfrac{{6!}}{{4!2!}} \times \dfrac{{4!}}{{1!3!}}\]
Further it can be solved we have,
\[ = \dfrac{{6 \times 5 \times 4!}}{{4! \times 2}} \times \dfrac{{4 \times 3!}}{{1 \times 3!}} = 15 \times 4 = 60\]
The number of combinations of $ 3 $ gents and $ 2 $ ladies is $ {}^6{C_3} \times {}^4{C_2} $
Which can further simplified as \[\dfrac{{6!}}{{3!\left( {6 - 3} \right)!}} \times \dfrac{{4!}}{{2!\left( {4 - 2} \right)!}}\]
Putting the values of factorial then we have,
\[ = \dfrac{{6!}}{{3!3!}} \times \dfrac{{4!}}{{2!2!}}\]
Further it can be solved we have,
\[ = \dfrac{{6 \times 5 \times 4 \times 3!}}{{3! \times 6}} \times \dfrac{{4 \times 3 \times 2!}}{{2 \times 2!}} = 20 \times 6 = 120\]
Now the total number of combination of forming the committee of $ 5 $ persons is $ 6 + 60 + 120 = 186 $ ways
Note: In calculation we have used a formula to simplify these types of equations is $ n! = n \times \left( {n - 1} \right)! $ . Also we should remember the value of some standard factorials which are $ 0! = 1\& 1! = 1 $ . Avoid any type of calculation mistake.
Complete step-by-step answer:
We have to choose a committee of $ 5 $ persons from given that people are $ 6 $ gents and $ 4 $ ladies
The possible way of forming this committee are
There are $ 5 $ gents and $ 0 $ ladies
$ 4 $ gents and $ 1 $ lady
$ 3 $ gents and $ 2 $ ladies
By considering these cases we can find the number of combinations,
The number of combinations of $ 5 $ gents and $ 0 $ ladies is $ {}^6{C_5} \times {}^4{C_0} $
Which can further simplified as \[\dfrac{{6!}}{{5!\left( {6 - 5} \right)!}} \times \dfrac{{4!}}{{0!\left( {4 - 0} \right)!}}\]
Putting the values of factorial then we have,
\[ = \dfrac{{6!}}{{5!1!}} \times \dfrac{{4!}}{{0!4!}} = 6 \times 1 = 6\]
The number of combinations of $ 4 $ gents and $ 1 $ lady is $ {}^6{C_4} \times {}^4{C_1} $
Which can further simplified as \[\dfrac{{6!}}{{4!\left( {6 - 4} \right)!}} \times \dfrac{{4!}}{{1!\left( {4 - 1} \right)!}}\]
Putting the values of factorial then we have,
\[ = \dfrac{{6!}}{{4!2!}} \times \dfrac{{4!}}{{1!3!}}\]
Further it can be solved we have,
\[ = \dfrac{{6 \times 5 \times 4!}}{{4! \times 2}} \times \dfrac{{4 \times 3!}}{{1 \times 3!}} = 15 \times 4 = 60\]
The number of combinations of $ 3 $ gents and $ 2 $ ladies is $ {}^6{C_3} \times {}^4{C_2} $
Which can further simplified as \[\dfrac{{6!}}{{3!\left( {6 - 3} \right)!}} \times \dfrac{{4!}}{{2!\left( {4 - 2} \right)!}}\]
Putting the values of factorial then we have,
\[ = \dfrac{{6!}}{{3!3!}} \times \dfrac{{4!}}{{2!2!}}\]
Further it can be solved we have,
\[ = \dfrac{{6 \times 5 \times 4 \times 3!}}{{3! \times 6}} \times \dfrac{{4 \times 3 \times 2!}}{{2 \times 2!}} = 20 \times 6 = 120\]
Now the total number of combination of forming the committee of $ 5 $ persons is $ 6 + 60 + 120 = 186 $ ways
Note: In calculation we have used a formula to simplify these types of equations is $ n! = n \times \left( {n - 1} \right)! $ . Also we should remember the value of some standard factorials which are $ 0! = 1\& 1! = 1 $ . Avoid any type of calculation mistake.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write an application to the principal requesting five class 10 english CBSE

