Answer
Verified
383.6k+ views
Hint: Represent the football, basketball, cricket as the sets F, B, C. Then write down the values of
Complete step-by-step answer:
n(F), n(B), n(C)…….. $n\left( F\cup B\cup C \right)$and $n\left( F\cap B\cap C \right)$ .
Then further use the formula
$n\left( F\cup B\cup C \right)=n\left( F \right)+n\left( B \right)+n\left( C \right)-\left\{ n\left( F\cap B \right)+n\left( B\cap C \right)+n\left( F\cap C \right) \right\}+n\left( F\cap B\cap C \right)$ and get the desired results.
In the question it is said that a college awarded 38 medals in football, 15 medals in basketball and 20 in cricket. Then it is said that there medals went to a total of 58 men and only 3 men got the medals in all three sports and hence we have to find the number of men who received exactly in two of the three sports.
Let the number of men who got medals in football be represented as n(F), similarly for basketball let it be represented as n(B) and in cricket as n(C).
For number of people who won in all the three sports will be $n\left( F\cap B\cap C \right)$, and the number of people who got medals in two of three is $\left\{ n\left( F\cap C \right)+n\left( F\cap B \right)+n\left( B\cap C \right) \right\}$and for total number men be represented as $n\left( F\cup B\cup C \right).$
So now we will represent the data as,
n(F) = 38
n(B) = 15
n(C) = 20
$n\left( F\cap B\cap C \right)=3$
$n\left( F\cup B\cup C \right)=58$
So now we will use the formula which is
$n\left( A\cup B\cup C \right)=n\left( A \right)+n\left( B \right)+n\left( C \right)-\left\{ n\left( A\cap B \right)+n\left( B\cap C \right)+n\left( A\cap C \right) \right\}+n\left( A\cap B\cap C \right)$
Now instead of sets A, B, C we will put sets of football (F), Basketball (B) and cricket (C).
We will write as,
$n\left( F\cup B\cup C \right)=n\left( F \right)+n\left( B \right)+n\left( C \right)-\left\{ n\left( F\cap B \right)+n\left( B\cap C \right)+n\left( F\cap C \right) \right\}+n\left( F\cap B\cap C \right)$
So now putting the values of n(F) = 38, n(B) = 15, n(C) = 20, $n\left( F\cap B\cap C \right)=3$and$n\left( F\cup B\cup C \right)$ we get,
$58=38+15+20-\left\{ n\left( F\cap B \right)+n\left( F\cap C \right)+n\left( B\cap C \right) \right\}+3$
So,
$n\left( F\cap B \right)+n\left( F\cap C \right)+n\left( B\cap C \right)=\left( 38+15+20+3 \right)58=18$
Hence the number of men who got two out of three medals are 18.
Therefore the correct answer is option (a).
Note: Students are generally confused between the signs $\cup $ and $\bigcap $ . Actually $\left( A\cup B \right)$ means that we have to include both the elements of A and B. \[\left( A\cap B \right)\] means that we have to consider only that element which is common to both A and B.
Complete step-by-step answer:
n(F), n(B), n(C)…….. $n\left( F\cup B\cup C \right)$and $n\left( F\cap B\cap C \right)$ .
Then further use the formula
$n\left( F\cup B\cup C \right)=n\left( F \right)+n\left( B \right)+n\left( C \right)-\left\{ n\left( F\cap B \right)+n\left( B\cap C \right)+n\left( F\cap C \right) \right\}+n\left( F\cap B\cap C \right)$ and get the desired results.
In the question it is said that a college awarded 38 medals in football, 15 medals in basketball and 20 in cricket. Then it is said that there medals went to a total of 58 men and only 3 men got the medals in all three sports and hence we have to find the number of men who received exactly in two of the three sports.
Let the number of men who got medals in football be represented as n(F), similarly for basketball let it be represented as n(B) and in cricket as n(C).
For number of people who won in all the three sports will be $n\left( F\cap B\cap C \right)$, and the number of people who got medals in two of three is $\left\{ n\left( F\cap C \right)+n\left( F\cap B \right)+n\left( B\cap C \right) \right\}$and for total number men be represented as $n\left( F\cup B\cup C \right).$
So now we will represent the data as,
n(F) = 38
n(B) = 15
n(C) = 20
$n\left( F\cap B\cap C \right)=3$
$n\left( F\cup B\cup C \right)=58$
So now we will use the formula which is
$n\left( A\cup B\cup C \right)=n\left( A \right)+n\left( B \right)+n\left( C \right)-\left\{ n\left( A\cap B \right)+n\left( B\cap C \right)+n\left( A\cap C \right) \right\}+n\left( A\cap B\cap C \right)$
Now instead of sets A, B, C we will put sets of football (F), Basketball (B) and cricket (C).
We will write as,
$n\left( F\cup B\cup C \right)=n\left( F \right)+n\left( B \right)+n\left( C \right)-\left\{ n\left( F\cap B \right)+n\left( B\cap C \right)+n\left( F\cap C \right) \right\}+n\left( F\cap B\cap C \right)$
So now putting the values of n(F) = 38, n(B) = 15, n(C) = 20, $n\left( F\cap B\cap C \right)=3$and$n\left( F\cup B\cup C \right)$ we get,
$58=38+15+20-\left\{ n\left( F\cap B \right)+n\left( F\cap C \right)+n\left( B\cap C \right) \right\}+3$
So,
$n\left( F\cap B \right)+n\left( F\cap C \right)+n\left( B\cap C \right)=\left( 38+15+20+3 \right)58=18$
Hence the number of men who got two out of three medals are 18.
Therefore the correct answer is option (a).
Note: Students are generally confused between the signs $\cup $ and $\bigcap $ . Actually $\left( A\cup B \right)$ means that we have to include both the elements of A and B. \[\left( A\cap B \right)\] means that we have to consider only that element which is common to both A and B.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
What is the past participle of wear Is it worn or class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
A Paragraph on Pollution in about 100-150 Words
What is Commercial Farming ? What are its types ? Explain them with Examples
How do you know if an equation is linear or nonlin class 10 maths CBSE