
A circular flower bed is surrounded by a path 4 m wide. The diameter of the flower bed is 66 m. What is the area of the path? \[\left( {{\rm{Use }}\pi = 3.14} \right)\]
Answer
495.6k+ views
Hint: Here, we need to find the area of the path. To solve the question, we will first find the area of the flower bed and the area of a bigger circle. The radius of the bigger circle is the sum of the radius of the smaller circle and the width of the path. The area of the path will be the difference in the areas of the bigger circle and the flower bed.
Formula Used: We will use the following formulas to solve the question:
1.The radius of a circle, \[r = \dfrac{d}{2}\], where \[r\] is the radius and \[d\] is the diameter of the circle.
2.The area of a circle, \[\pi {r^2}\], where \[r\] is the radius of the circle.
Complete step-by-step answer:
First, we will draw the diagram using the given information.
Here, the yellow region is the circular flower bed with diameter \[AB\] and centre \[O\]. The grey region is the path of width 4 m.
First, we will find the areas of the two concentric circles.
Now, we know that the radius of a circle is half of its diameter, that is \[r = \dfrac{d}{2}\].
Substituting the diameter as 66 m in the formula, we get
\[\begin{array}{l} \Rightarrow r = \dfrac{{66}}{2}\\ \Rightarrow r = 33{\rm{ m}}\end{array}\]
Also, we know that the area of a circle is given by \[\pi {r^2}\], where \[r\] is the radius of the circle.
Substituting \[r = 33{\rm{m}}\], we get
Area of the flower bed \[ = \pi {\left( {33} \right)^2}{{\rm{m}}^2}\]
Simplifying the expression, we get
Area of the flower bed \[ = 1089\pi {\rm{ }}{{\rm{m}}^2}\]
Next, we will calculate the area of the bigger circle.
From the figure, we can see that the radius of the bigger circle is the sum of the radius of the smaller circle and the width of the path.
Therefore, we get
Radius of bigger circle \[ = 33 + 4 = 37{\rm{ m}}\]
Substituting \[r = 37{\rm{m}}\] in the formula for area of a circle, we get
Area of the bigger circle \[ = \pi {\left( {37} \right)^2}{{\rm{m}}^2}\]
Simplifying the expression, we get
Area of the bigger circle \[ = 1369\pi {\rm{ }}{{\rm{m}}^2}\]
Finally, we will find the area of the path of width 4 m.
From the figure, we can observe that the area of the path is equal to the difference in the areas of the bigger circle and the flower bed.
Therefore, we get
\[{\rm{Area\, of\, path}} = {\rm{Area\, of\, bigger\, circle}} - {\rm{Area\, of\, flower\, bed}}\]
Substituting the area of the bigger circle as \[1369\pi {\rm{ }}{{\rm{m}}^2}\] and the area of the flower bed as \[1089\pi {\rm{ }}{{\rm{m}}^2}\], we get
\[\begin{array}{l} \Rightarrow {\rm{Area\, of\, path}} = 1369\pi {\rm{ }}{{\rm{m}}^2} - 1089\pi {\rm{ }}{{\rm{m}}^2}\\ \Rightarrow {\rm{Area\, of\, path}} = 280\pi {\rm{ }}{{\rm{m}}^2}\end{array}\]
Substituting \[\pi = 3.14\], we get
\[\begin{array}{l} \Rightarrow {\rm{Area\, of\, path}} = 280 \times 3.14{\rm{ }}{{\rm{m}}^2}\\ \Rightarrow {\rm{Area\, of\, path}} = 879.2{\rm{ }}{{\rm{m}}^2}\end{array}\]
Therefore, we get the area of the path of width 4 m as \[879.2{\rm{ }}{{\rm{m}}^2}\].
Note: You should remember to subtract the area of the flower bed from the area of the bigger circle to get the area of the path. A common mistake is to assume that the radius of 37 m is to be used to find the area of the circular path. However, that will give the area of the bigger circle and not the area of the path.
Formula Used: We will use the following formulas to solve the question:
1.The radius of a circle, \[r = \dfrac{d}{2}\], where \[r\] is the radius and \[d\] is the diameter of the circle.
2.The area of a circle, \[\pi {r^2}\], where \[r\] is the radius of the circle.
Complete step-by-step answer:
First, we will draw the diagram using the given information.

Here, the yellow region is the circular flower bed with diameter \[AB\] and centre \[O\]. The grey region is the path of width 4 m.
First, we will find the areas of the two concentric circles.
Now, we know that the radius of a circle is half of its diameter, that is \[r = \dfrac{d}{2}\].
Substituting the diameter as 66 m in the formula, we get
\[\begin{array}{l} \Rightarrow r = \dfrac{{66}}{2}\\ \Rightarrow r = 33{\rm{ m}}\end{array}\]
Also, we know that the area of a circle is given by \[\pi {r^2}\], where \[r\] is the radius of the circle.
Substituting \[r = 33{\rm{m}}\], we get
Area of the flower bed \[ = \pi {\left( {33} \right)^2}{{\rm{m}}^2}\]
Simplifying the expression, we get
Area of the flower bed \[ = 1089\pi {\rm{ }}{{\rm{m}}^2}\]
Next, we will calculate the area of the bigger circle.
From the figure, we can see that the radius of the bigger circle is the sum of the radius of the smaller circle and the width of the path.
Therefore, we get
Radius of bigger circle \[ = 33 + 4 = 37{\rm{ m}}\]
Substituting \[r = 37{\rm{m}}\] in the formula for area of a circle, we get
Area of the bigger circle \[ = \pi {\left( {37} \right)^2}{{\rm{m}}^2}\]
Simplifying the expression, we get
Area of the bigger circle \[ = 1369\pi {\rm{ }}{{\rm{m}}^2}\]
Finally, we will find the area of the path of width 4 m.
From the figure, we can observe that the area of the path is equal to the difference in the areas of the bigger circle and the flower bed.
Therefore, we get
\[{\rm{Area\, of\, path}} = {\rm{Area\, of\, bigger\, circle}} - {\rm{Area\, of\, flower\, bed}}\]
Substituting the area of the bigger circle as \[1369\pi {\rm{ }}{{\rm{m}}^2}\] and the area of the flower bed as \[1089\pi {\rm{ }}{{\rm{m}}^2}\], we get
\[\begin{array}{l} \Rightarrow {\rm{Area\, of\, path}} = 1369\pi {\rm{ }}{{\rm{m}}^2} - 1089\pi {\rm{ }}{{\rm{m}}^2}\\ \Rightarrow {\rm{Area\, of\, path}} = 280\pi {\rm{ }}{{\rm{m}}^2}\end{array}\]
Substituting \[\pi = 3.14\], we get
\[\begin{array}{l} \Rightarrow {\rm{Area\, of\, path}} = 280 \times 3.14{\rm{ }}{{\rm{m}}^2}\\ \Rightarrow {\rm{Area\, of\, path}} = 879.2{\rm{ }}{{\rm{m}}^2}\end{array}\]
Therefore, we get the area of the path of width 4 m as \[879.2{\rm{ }}{{\rm{m}}^2}\].
Note: You should remember to subtract the area of the flower bed from the area of the bigger circle to get the area of the path. A common mistake is to assume that the radius of 37 m is to be used to find the area of the circular path. However, that will give the area of the bigger circle and not the area of the path.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Dr BR Ambedkars fathers name was Ramaji Sakpal and class 10 social science CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the full form of POSCO class 10 social science CBSE
