Answer
Verified
464.1k+ views
Hint: Find the area of the minor segment by subtracting the area of the triangle formed by chord from the area of minor sector. Where\[\theta ={{90}^{\circ }}\] for the minor sector and for finding the area of the major sector, the angle becomes \[\left( 360-\theta \right)\].
Complete step by step answer:
Complete step-by-step answer:
(i) Minor segment
Given that the radius of the circle is 10cm.
It’s center is marked as O.
OA and OB are the radii of the triangle.
\[\therefore \]OA = OB = 10cm.
Here AB refers to the chord of the circle.
Given that the chord subtends a right angle at the center of the circle.
\[\therefore \theta ={{90}^{\circ }}\]
We need to find the area of the minor segment AOB.
Area is given by the formula, \[\dfrac{\theta }{360}\times \pi {{r}^{2}}\].
\[\therefore \] Area of minor sector OAPB\[=\dfrac{\theta }{360}\times \pi {{r}^{2}}=\dfrac{90}{360}\times 3.14\times {{\left( 10 \right)}^{2}}\]
\[\begin{align}
& =\dfrac{1}{4}\times 3.14\times 100 \\
& =\dfrac{314}{4}=78.5c{{m}^{2}} \\
\end{align}\]
Now we will find area of triangle AOB,
Area of triangle AOB = $\dfrac{1}{2} \times $ Base $ \times $ Height
Area of triangle AOB = $\dfrac{1}{2} \times $ OB $ \times $ AO
Area of triangle AOB = $\dfrac{1}{2} \times $ 10 $ \times $ 10
Area of triangle AOB = 50 $\text{cm}^2$
So now,
Area of minor segment = Area of Minor sector - Area of triangle AOB
Area of minor segment = 78.5 - 50
Area of minor segment = 28.5 $\text{cm}^2$
(ii) Major sector
Angle =\[360-\theta =360-{{90}^{\circ }}\] of the shaded portion.
Here, radius = 10cm.
Area of major sector is given by formula,
\[\begin{align}
& =\dfrac{360-\theta }{360}\times \pi {{r}^{2}} \\
& =\dfrac{360-90}{360}\times 3.14\times {{10}^{2}}=\dfrac{270}{360}\times 314 \\
\end{align}\]
\[=\dfrac{3}{4}\times 314=235.5c{{m}^{2}}\].
\[\therefore \] Area of minor sector =28.5\[c{{m}^{2}}\].
Area of major sector = 235.5\[c{{m}^{2}}\].
So, Area of major sector = 235.5\[c{{m}^{2}}\].
Note: The sector and segment of a circle are entirely different.
The sector can be called a “pizza” slice and the segment which is cut from the circle by a “chord”.
Remember to take the value of \[\theta \] in the major sector as \[\left( 360-\theta \right)\] and not\[{{90}^{\circ }}\]. As we are finding the shaded region, we should that angle value.
Complete step by step answer:
Complete step-by-step answer:
(i) Minor segment
Given that the radius of the circle is 10cm.
It’s center is marked as O.
OA and OB are the radii of the triangle.
\[\therefore \]OA = OB = 10cm.
Here AB refers to the chord of the circle.
Given that the chord subtends a right angle at the center of the circle.
\[\therefore \theta ={{90}^{\circ }}\]
We need to find the area of the minor segment AOB.
Area is given by the formula, \[\dfrac{\theta }{360}\times \pi {{r}^{2}}\].
\[\therefore \] Area of minor sector OAPB\[=\dfrac{\theta }{360}\times \pi {{r}^{2}}=\dfrac{90}{360}\times 3.14\times {{\left( 10 \right)}^{2}}\]
\[\begin{align}
& =\dfrac{1}{4}\times 3.14\times 100 \\
& =\dfrac{314}{4}=78.5c{{m}^{2}} \\
\end{align}\]
Now we will find area of triangle AOB,
Area of triangle AOB = $\dfrac{1}{2} \times $ Base $ \times $ Height
Area of triangle AOB = $\dfrac{1}{2} \times $ OB $ \times $ AO
Area of triangle AOB = $\dfrac{1}{2} \times $ 10 $ \times $ 10
Area of triangle AOB = 50 $\text{cm}^2$
So now,
Area of minor segment = Area of Minor sector - Area of triangle AOB
Area of minor segment = 78.5 - 50
Area of minor segment = 28.5 $\text{cm}^2$
(ii) Major sector
Angle =\[360-\theta =360-{{90}^{\circ }}\] of the shaded portion.
Here, radius = 10cm.
Area of major sector is given by formula,
\[\begin{align}
& =\dfrac{360-\theta }{360}\times \pi {{r}^{2}} \\
& =\dfrac{360-90}{360}\times 3.14\times {{10}^{2}}=\dfrac{270}{360}\times 314 \\
\end{align}\]
\[=\dfrac{3}{4}\times 314=235.5c{{m}^{2}}\].
\[\therefore \] Area of minor sector =28.5\[c{{m}^{2}}\].
Area of major sector = 235.5\[c{{m}^{2}}\].
So, Area of major sector = 235.5\[c{{m}^{2}}\].
Note: The sector and segment of a circle are entirely different.
The sector can be called a “pizza” slice and the segment which is cut from the circle by a “chord”.
Remember to take the value of \[\theta \] in the major sector as \[\left( 360-\theta \right)\] and not\[{{90}^{\circ }}\]. As we are finding the shaded region, we should that angle value.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE