
A chord of a circle of radius 10cm subtends a right angle at the center. Find the area of the corresponding (i) Minor segment (ii) Major sector (use\[\pi =3.14\]).
Answer
579.6k+ views
Hint: Find the area of the minor segment by subtracting the area of the triangle formed by chord from the area of minor sector. Where\[\theta ={{90}^{\circ }}\] for the minor sector and for finding the area of the major sector, the angle becomes \[\left( 360-\theta \right)\].
Complete step by step answer:
Complete step-by-step answer:
(i) Minor segment
Given that the radius of the circle is 10cm.
It’s center is marked as O.
OA and OB are the radii of the triangle.
\[\therefore \]OA = OB = 10cm.
Here AB refers to the chord of the circle.
Given that the chord subtends a right angle at the center of the circle.
\[\therefore \theta ={{90}^{\circ }}\]
We need to find the area of the minor segment AOB.
Area is given by the formula, \[\dfrac{\theta }{360}\times \pi {{r}^{2}}\].
\[\therefore \] Area of minor sector OAPB\[=\dfrac{\theta }{360}\times \pi {{r}^{2}}=\dfrac{90}{360}\times 3.14\times {{\left( 10 \right)}^{2}}\]
\[\begin{align}
& =\dfrac{1}{4}\times 3.14\times 100 \\
& =\dfrac{314}{4}=78.5c{{m}^{2}} \\
\end{align}\]
Now we will find area of triangle AOB,
Area of triangle AOB = $\dfrac{1}{2} \times $ Base $ \times $ Height
Area of triangle AOB = $\dfrac{1}{2} \times $ OB $ \times $ AO
Area of triangle AOB = $\dfrac{1}{2} \times $ 10 $ \times $ 10
Area of triangle AOB = 50 $\text{cm}^2$
So now,
Area of minor segment = Area of Minor sector - Area of triangle AOB
Area of minor segment = 78.5 - 50
Area of minor segment = 28.5 $\text{cm}^2$
(ii) Major sector
Angle =\[360-\theta =360-{{90}^{\circ }}\] of the shaded portion.
Here, radius = 10cm.
Area of major sector is given by formula,
\[\begin{align}
& =\dfrac{360-\theta }{360}\times \pi {{r}^{2}} \\
& =\dfrac{360-90}{360}\times 3.14\times {{10}^{2}}=\dfrac{270}{360}\times 314 \\
\end{align}\]
\[=\dfrac{3}{4}\times 314=235.5c{{m}^{2}}\].
\[\therefore \] Area of minor sector =28.5\[c{{m}^{2}}\].
Area of major sector = 235.5\[c{{m}^{2}}\].
So, Area of major sector = 235.5\[c{{m}^{2}}\].
Note: The sector and segment of a circle are entirely different.
The sector can be called a “pizza” slice and the segment which is cut from the circle by a “chord”.
Remember to take the value of \[\theta \] in the major sector as \[\left( 360-\theta \right)\] and not\[{{90}^{\circ }}\]. As we are finding the shaded region, we should that angle value.
Complete step by step answer:
Complete step-by-step answer:
(i) Minor segment
Given that the radius of the circle is 10cm.
It’s center is marked as O.
OA and OB are the radii of the triangle.
\[\therefore \]OA = OB = 10cm.
Here AB refers to the chord of the circle.
Given that the chord subtends a right angle at the center of the circle.
\[\therefore \theta ={{90}^{\circ }}\]
We need to find the area of the minor segment AOB.
Area is given by the formula, \[\dfrac{\theta }{360}\times \pi {{r}^{2}}\].
\[\therefore \] Area of minor sector OAPB\[=\dfrac{\theta }{360}\times \pi {{r}^{2}}=\dfrac{90}{360}\times 3.14\times {{\left( 10 \right)}^{2}}\]
\[\begin{align}
& =\dfrac{1}{4}\times 3.14\times 100 \\
& =\dfrac{314}{4}=78.5c{{m}^{2}} \\
\end{align}\]
Now we will find area of triangle AOB,
Area of triangle AOB = $\dfrac{1}{2} \times $ Base $ \times $ Height
Area of triangle AOB = $\dfrac{1}{2} \times $ OB $ \times $ AO
Area of triangle AOB = $\dfrac{1}{2} \times $ 10 $ \times $ 10
Area of triangle AOB = 50 $\text{cm}^2$
So now,
Area of minor segment = Area of Minor sector - Area of triangle AOB
Area of minor segment = 78.5 - 50
Area of minor segment = 28.5 $\text{cm}^2$
(ii) Major sector
Angle =\[360-\theta =360-{{90}^{\circ }}\] of the shaded portion.
Here, radius = 10cm.
Area of major sector is given by formula,
\[\begin{align}
& =\dfrac{360-\theta }{360}\times \pi {{r}^{2}} \\
& =\dfrac{360-90}{360}\times 3.14\times {{10}^{2}}=\dfrac{270}{360}\times 314 \\
\end{align}\]
\[=\dfrac{3}{4}\times 314=235.5c{{m}^{2}}\].
\[\therefore \] Area of minor sector =28.5\[c{{m}^{2}}\].
Area of major sector = 235.5\[c{{m}^{2}}\].
So, Area of major sector = 235.5\[c{{m}^{2}}\].
Note: The sector and segment of a circle are entirely different.
The sector can be called a “pizza” slice and the segment which is cut from the circle by a “chord”.
Remember to take the value of \[\theta \] in the major sector as \[\left( 360-\theta \right)\] and not\[{{90}^{\circ }}\]. As we are finding the shaded region, we should that angle value.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

