
A bucket made of aluminium sheet is of height \[20cm\] and its upper and lower ends are of radius \[25cm\] and \[10cm\] respectively. Find the cost of making the bucket if the aluminium sheet costs \[Rs.70\] per \[100c{m^2}{\text{.}}\left( {{\text{Use }}\pi = 3.14} \right)\]
Answer
611.7k+ views
Hint: - The bottom part is in the shape of a circle.So, Area of circle $ = \pi {r^2}$ and Lateral surface area of Frustum of cone \[ = \pi \left( {R + r} \right)\sqrt {{{\left( {R - r} \right)}^2} + {h^2}} \]
Let assume
Height of frustum of cone\[h = 20\;cm\]
Radius of upper end \[R = 25\;cm\]
Radius at bottom end \[r = 10\;cm\]
Here in this question to find the area of aluminium sheet used for making the bucket, we have to find the total surface area of frustum of cone.
Total surface area = curved surface area + area of bottom circle
\[ \Rightarrow \pi \left( {R + r} \right)\sqrt {{{\left( {R - r} \right)}^2} + {h^2}} + \pi {r^2}\]
Take$\pi $common so that the equation simplifies
\[ \Rightarrow \left( {\left( {R + r} \right)\sqrt {{{\left( {R - r} \right)}^2} + {h^2}} + {r^2}} \right)\pi \]
Now put the value of all variables in above equation
\[
\Rightarrow \left( {\left( {25 + 10} \right)\sqrt {{{\left( {25 - 10} \right)}^2} + {{20}^2}} + {{10}^2}} \right)\pi \\
\Rightarrow \left( {\left( {35} \right)\sqrt {{{\left( {15} \right)}^2} + 400} + 100} \right)\pi \\
\]
Simplify it further, such that
\[
\Rightarrow \left( {\left( {35} \right)\sqrt {225 + 400} + 100} \right)\pi \\
\Rightarrow \left( {\left( {35} \right)\sqrt {625} + 100} \right)\pi \\
\Rightarrow \left( {\left( {35} \right) \times 25 + 100} \right)\pi \\
\Rightarrow \left( {875 + 100} \right) \times 3.14 \\
\Rightarrow 3061.5c{m^2} \\
\]
Thus, the total aluminium sheet required for making the bucket \[ = 3061.5\;c{m^2}\]
cost of \[100\;c{m^2}\] aluminium sheet which is given\[ = 70\;Rs.\]
therefore, cost of \[1c{m^2}\]aluminium sheet \[ = \dfrac{{70}}{{100}} = 0.7\;Rs.\]
from the cost of \[3061.5\;c{m^2}\] aluminium sheet \[ = 3061.5 \times 0.7 = 2143.05\;Rs.\]
Hence the cost of making the bucket is \[2143.05\;Rs.\]
Note: - Bucket is nothing but a frustum of cone. For a question like this, always first focus on what is given in the question itself. Total surface area is equal to curved surface area plus area of bottom circle. Remember basic formulas like area of circle $ = \pi {r^2}$and Lateral surface area of Frustum of cone\[ = \pi \left( {R + r} \right)\sqrt {{{\left( {R - r} \right)}^2} + {h^2}} .\]
Let assume
Height of frustum of cone\[h = 20\;cm\]
Radius of upper end \[R = 25\;cm\]
Radius at bottom end \[r = 10\;cm\]
Here in this question to find the area of aluminium sheet used for making the bucket, we have to find the total surface area of frustum of cone.
Total surface area = curved surface area + area of bottom circle
\[ \Rightarrow \pi \left( {R + r} \right)\sqrt {{{\left( {R - r} \right)}^2} + {h^2}} + \pi {r^2}\]
Take$\pi $common so that the equation simplifies
\[ \Rightarrow \left( {\left( {R + r} \right)\sqrt {{{\left( {R - r} \right)}^2} + {h^2}} + {r^2}} \right)\pi \]
Now put the value of all variables in above equation
\[
\Rightarrow \left( {\left( {25 + 10} \right)\sqrt {{{\left( {25 - 10} \right)}^2} + {{20}^2}} + {{10}^2}} \right)\pi \\
\Rightarrow \left( {\left( {35} \right)\sqrt {{{\left( {15} \right)}^2} + 400} + 100} \right)\pi \\
\]
Simplify it further, such that
\[
\Rightarrow \left( {\left( {35} \right)\sqrt {225 + 400} + 100} \right)\pi \\
\Rightarrow \left( {\left( {35} \right)\sqrt {625} + 100} \right)\pi \\
\Rightarrow \left( {\left( {35} \right) \times 25 + 100} \right)\pi \\
\Rightarrow \left( {875 + 100} \right) \times 3.14 \\
\Rightarrow 3061.5c{m^2} \\
\]
Thus, the total aluminium sheet required for making the bucket \[ = 3061.5\;c{m^2}\]
cost of \[100\;c{m^2}\] aluminium sheet which is given\[ = 70\;Rs.\]
therefore, cost of \[1c{m^2}\]aluminium sheet \[ = \dfrac{{70}}{{100}} = 0.7\;Rs.\]
from the cost of \[3061.5\;c{m^2}\] aluminium sheet \[ = 3061.5 \times 0.7 = 2143.05\;Rs.\]
Hence the cost of making the bucket is \[2143.05\;Rs.\]
Note: - Bucket is nothing but a frustum of cone. For a question like this, always first focus on what is given in the question itself. Total surface area is equal to curved surface area plus area of bottom circle. Remember basic formulas like area of circle $ = \pi {r^2}$and Lateral surface area of Frustum of cone\[ = \pi \left( {R + r} \right)\sqrt {{{\left( {R - r} \right)}^2} + {h^2}} .\]
Recently Updated Pages
What are the Features of the New Economic Policy of India?

Draw the net of a tetrahedron class 10 maths CBSE

Which of the 26 letters of English alphabet will form class 10 physics CBSE

Water is being pumped out through a circular pipe -class-10-maths-CBSE

Name the place where the movement of indigo planters class 10 social science CBSE

What is the line segment joining any two points on-class-10-maths-CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

