Answer
Verified
423.6k+ views
Hint: First find the sample space of the set of the cards by calculating the numbers from 6 to 70. Then find the number of favourable outcomes by calculating the composite numbers from 50 to 70. Determine the required probability by the formula, $P=\dfrac{Favourable\text{ outcomes}}{number \, of\, outcomes\, in \,Sample\text{ space}}$
Complete step by step solution:
Sample space, S =total number of cards from 6 to 70
Applying general term formula of an arithmetic progression;
First term, a=6
Last term, l=70
Common difference, d=1 (as consecutive numbers from 6 to 70 are taken)
Let, total number of cards is ‘n’
By the formula of last term of AP;
\[\begin{align}
& l=a+(n-1)d \\
& \Rightarrow 70=6+(n-1)(1) \\
& \Rightarrow n=65 \\
\end{align}\]
No of cards from 6 to 70 is 65.
So, sample space, \[\left| S \right|=65\]
Favourable outcome, A = {a composite number between 50 and 70}
So, A = {51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69}
The number of favourable outcomes, $\left| A \right|=15$
Probability of getting a composite number between 50 and 70,
$P\left( A \right)=\dfrac{\left| A \right|}{\left| S \right|}=\dfrac{15}{65}=\dfrac{3}{13}$
This is the required solution of the given question.
Note:
In mathematics, composite numbers are the numbers which have more than two factors. So, the composite numbers between 50 and 70 are 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68 and 69. Hence, we are getting these as our favourable outcome for ‘A’.
Complete step by step solution:
Sample space, S =total number of cards from 6 to 70
Applying general term formula of an arithmetic progression;
First term, a=6
Last term, l=70
Common difference, d=1 (as consecutive numbers from 6 to 70 are taken)
Let, total number of cards is ‘n’
By the formula of last term of AP;
\[\begin{align}
& l=a+(n-1)d \\
& \Rightarrow 70=6+(n-1)(1) \\
& \Rightarrow n=65 \\
\end{align}\]
No of cards from 6 to 70 is 65.
So, sample space, \[\left| S \right|=65\]
Favourable outcome, A = {a composite number between 50 and 70}
So, A = {51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69}
The number of favourable outcomes, $\left| A \right|=15$
Probability of getting a composite number between 50 and 70,
$P\left( A \right)=\dfrac{\left| A \right|}{\left| S \right|}=\dfrac{15}{65}=\dfrac{3}{13}$
This is the required solution of the given question.
Note:
In mathematics, composite numbers are the numbers which have more than two factors. So, the composite numbers between 50 and 70 are 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68 and 69. Hence, we are getting these as our favourable outcome for ‘A’.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE