Answer

Verified

449.4k+ views

Hint: Find the total number of coins present in the box. Select 5 coins from the total number of coins. Find the favorable conditions of how 5 coins can be selected. Then find P (E).

Complete step-by-step answer:

From the question, a box contains coins. It is mentioned that these are 4 types of coins, fifty paise, twenty paise, ten paise and five paise.

There are 2 fifty paise coins, 5 twenty paise coins and the rest are ten and five paise coins, where the number can be taken as N, where N is a natural number.

Therefore the total number of coins = N + 7.

2 fifty paise + 5 twenty paise + N = N + 7.

We have to take 5 coins from the box in random i.e. we have to take 5 coins from the (N + 7) coins present in the box.

\[\therefore \]5 coins can be chosen from (N + 7) coins in \[{}^{N+7}{{C}_{5}}\]ways, which is of the form \[{}^{n}{{C}_{r}}\]of combination, where no order is needed for choosing the 5 coins.

Let E denote the event that the sum of the values of the coins is less than 1 rupee and fifty paise.

Let E’ denotes the event that the total value of five coins is equal to or more than 1 rupee and 50 paise.

There are a number of favorable cases, or which we have to choose 5 coins.

1 coin from 50 paise and 4 coins from 20 paise\[\Rightarrow {}^{2}{{C}_{1}}\times {}^{5}{{C}_{4}}\times {}^{N}{{C}_{0}}\]

2 coins from 50 paise and 3 coins from 20 paise \[\Rightarrow {}^{2}{{C}_{2}}\times {}^{5}{{C}_{3}}\times {}^{N}{{C}_{0}}\]

2 coins from 50 paise, 2 coins from 20 paise and 1 from N\[\Rightarrow {}^{2}{{C}_{2}}\times {}^{5}{{C}_{2}}\times {}^{N}{{C}_{1}}\]

There 3 are the favorable cases, let us add them together.

\[{}^{2}{{C}_{1}}\times {}^{5}{{C}_{4}}\times {}^{N}{{C}_{0}}+{}^{2}{{C}_{2}}\times {}^{5}{{C}_{3}}\times {}^{N}{{C}_{0}}+{}^{2}{{C}_{2}}\times {}^{5}{{C}_{2}}\times {}^{N}{{C}_{1}}\]

We know, \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]

\[\left[ \begin{align}

& \because {}^{N}{{C}_{0}}=1 \\

& \because {}^{2}{{C}_{2}}=1 \\

\end{align} \right]\]

\[\begin{align}

& \therefore \dfrac{2!}{1!1!}\times \dfrac{5!}{1!\times 4!}\times 1+\dfrac{2!}{0!1!}\times \dfrac{5!}{2!3!}\times 1+\dfrac{2!}{0!1!}\times \dfrac{5!}{2!3!}\times N \\

& =2\times 5\times 1+1\times \dfrac{5\times 4\times 3!}{2!3!}\times 1+1\times \dfrac{5\times 4\times 3!}{2!31}\times N \\

& =10+10\times 1+10\times N \\

& =10+10+10N \\

& =20+10N \\

& =10\left( 2+N \right) \\

\end{align}\]

\[P\left( E \right)=10\left( N+2 \right)/{}^{N+7}{{C}_{5}}\]; Probability of sum of value of coin less than Rs. 1 and 50 paise.

We know, P (E) + P (not E) =1

\[\begin{align}

& P\left( E \right)+P\left( E' \right)=1 \\

& \therefore P\left( E' \right)=1-P\left( E \right)=1-\dfrac{10\left( N+2 \right)}{{}^{N+7}{{C}_{5}}} \\

\end{align}\]

\[\therefore \]Required probability \[=\dfrac{{}^{n+7}{{C}_{5}}-10\left( N+2 \right)}{{}^{n+7}{{C}_{5}}}\]

\[=1-\dfrac{10\left( N+2 \right)}{{}^{n+7}{{C}_{5}}}=1-\left\{ \dfrac{20+10N}{{}^{n+7}{{C}_{5}}} \right\}\]

Hence option (a) is the correct answer.

Note: In questions like their basic understanding of the problem is required. The total number of coins formed is \[\left( N+7 \right)\]. But we will find it difficult to understand how many coins were there in the box. You have to pick 5 coins randomly from a box consisting of 4 different sets of paisa. Find the favorable conditions for the same.

Complete step-by-step answer:

From the question, a box contains coins. It is mentioned that these are 4 types of coins, fifty paise, twenty paise, ten paise and five paise.

There are 2 fifty paise coins, 5 twenty paise coins and the rest are ten and five paise coins, where the number can be taken as N, where N is a natural number.

Therefore the total number of coins = N + 7.

2 fifty paise + 5 twenty paise + N = N + 7.

We have to take 5 coins from the box in random i.e. we have to take 5 coins from the (N + 7) coins present in the box.

\[\therefore \]5 coins can be chosen from (N + 7) coins in \[{}^{N+7}{{C}_{5}}\]ways, which is of the form \[{}^{n}{{C}_{r}}\]of combination, where no order is needed for choosing the 5 coins.

Let E denote the event that the sum of the values of the coins is less than 1 rupee and fifty paise.

Let E’ denotes the event that the total value of five coins is equal to or more than 1 rupee and 50 paise.

There are a number of favorable cases, or which we have to choose 5 coins.

1 coin from 50 paise and 4 coins from 20 paise\[\Rightarrow {}^{2}{{C}_{1}}\times {}^{5}{{C}_{4}}\times {}^{N}{{C}_{0}}\]

2 coins from 50 paise and 3 coins from 20 paise \[\Rightarrow {}^{2}{{C}_{2}}\times {}^{5}{{C}_{3}}\times {}^{N}{{C}_{0}}\]

2 coins from 50 paise, 2 coins from 20 paise and 1 from N\[\Rightarrow {}^{2}{{C}_{2}}\times {}^{5}{{C}_{2}}\times {}^{N}{{C}_{1}}\]

There 3 are the favorable cases, let us add them together.

\[{}^{2}{{C}_{1}}\times {}^{5}{{C}_{4}}\times {}^{N}{{C}_{0}}+{}^{2}{{C}_{2}}\times {}^{5}{{C}_{3}}\times {}^{N}{{C}_{0}}+{}^{2}{{C}_{2}}\times {}^{5}{{C}_{2}}\times {}^{N}{{C}_{1}}\]

We know, \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]

\[\left[ \begin{align}

& \because {}^{N}{{C}_{0}}=1 \\

& \because {}^{2}{{C}_{2}}=1 \\

\end{align} \right]\]

\[\begin{align}

& \therefore \dfrac{2!}{1!1!}\times \dfrac{5!}{1!\times 4!}\times 1+\dfrac{2!}{0!1!}\times \dfrac{5!}{2!3!}\times 1+\dfrac{2!}{0!1!}\times \dfrac{5!}{2!3!}\times N \\

& =2\times 5\times 1+1\times \dfrac{5\times 4\times 3!}{2!3!}\times 1+1\times \dfrac{5\times 4\times 3!}{2!31}\times N \\

& =10+10\times 1+10\times N \\

& =10+10+10N \\

& =20+10N \\

& =10\left( 2+N \right) \\

\end{align}\]

\[P\left( E \right)=10\left( N+2 \right)/{}^{N+7}{{C}_{5}}\]; Probability of sum of value of coin less than Rs. 1 and 50 paise.

We know, P (E) + P (not E) =1

\[\begin{align}

& P\left( E \right)+P\left( E' \right)=1 \\

& \therefore P\left( E' \right)=1-P\left( E \right)=1-\dfrac{10\left( N+2 \right)}{{}^{N+7}{{C}_{5}}} \\

\end{align}\]

\[\therefore \]Required probability \[=\dfrac{{}^{n+7}{{C}_{5}}-10\left( N+2 \right)}{{}^{n+7}{{C}_{5}}}\]

\[=1-\dfrac{10\left( N+2 \right)}{{}^{n+7}{{C}_{5}}}=1-\left\{ \dfrac{20+10N}{{}^{n+7}{{C}_{5}}} \right\}\]

Hence option (a) is the correct answer.

Note: In questions like their basic understanding of the problem is required. The total number of coins formed is \[\left( N+7 \right)\]. But we will find it difficult to understand how many coins were there in the box. You have to pick 5 coins randomly from a box consisting of 4 different sets of paisa. Find the favorable conditions for the same.

Recently Updated Pages

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Let x1x2xn be in an AP of x1 + x4 + x9 + x11 + x20-class-11-maths-CBSE

Let x1x2x3 and x4 be four nonzero real numbers satisfying class 11 maths CBSE

Trending doubts

Write a letter to the principal requesting him to grant class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Give 10 examples of Material nouns Abstract nouns Common class 10 english CBSE

Write an application to the principal requesting five class 10 english CBSE

List out three methods of soil conservation

Why is there a time difference of about 5 hours between class 10 social science CBSE