
A box contains 2 fifty paise coins, 5 twenty paise coins and a certain fixed number N (\[\ge 2\]) of ten and five paise coins. Five coins are taken out of the box at random. Find the probability that the total value of these five coins is less than Rs. 1 and 50 paise.
a) \[1-\left\{ \dfrac{20+10N}{{}^{N+7}{{C}_{5}}} \right\}\]
b) \[\left\{ \dfrac{20+10N}{{}^{N+7}{{C}_{5}}} \right\}\]
c) \[\left\{ \dfrac{20+10N}{{}^{N+5}{{C}_{7}}} \right\}\]
d) \[1-\left\{ \dfrac{20+10N}{{}^{N+5}{{C}_{7}}} \right\}\]
Answer
601.5k+ views
Hint: Find the total number of coins present in the box. Select 5 coins from the total number of coins. Find the favorable conditions of how 5 coins can be selected. Then find P (E).
Complete step-by-step answer:
From the question, a box contains coins. It is mentioned that these are 4 types of coins, fifty paise, twenty paise, ten paise and five paise.
There are 2 fifty paise coins, 5 twenty paise coins and the rest are ten and five paise coins, where the number can be taken as N, where N is a natural number.
Therefore the total number of coins = N + 7.
2 fifty paise + 5 twenty paise + N = N + 7.
We have to take 5 coins from the box in random i.e. we have to take 5 coins from the (N + 7) coins present in the box.
\[\therefore \]5 coins can be chosen from (N + 7) coins in \[{}^{N+7}{{C}_{5}}\]ways, which is of the form \[{}^{n}{{C}_{r}}\]of combination, where no order is needed for choosing the 5 coins.
Let E denote the event that the sum of the values of the coins is less than 1 rupee and fifty paise.
Let E’ denotes the event that the total value of five coins is equal to or more than 1 rupee and 50 paise.
There are a number of favorable cases, or which we have to choose 5 coins.
1 coin from 50 paise and 4 coins from 20 paise\[\Rightarrow {}^{2}{{C}_{1}}\times {}^{5}{{C}_{4}}\times {}^{N}{{C}_{0}}\]
2 coins from 50 paise and 3 coins from 20 paise \[\Rightarrow {}^{2}{{C}_{2}}\times {}^{5}{{C}_{3}}\times {}^{N}{{C}_{0}}\]
2 coins from 50 paise, 2 coins from 20 paise and 1 from N\[\Rightarrow {}^{2}{{C}_{2}}\times {}^{5}{{C}_{2}}\times {}^{N}{{C}_{1}}\]
There 3 are the favorable cases, let us add them together.
\[{}^{2}{{C}_{1}}\times {}^{5}{{C}_{4}}\times {}^{N}{{C}_{0}}+{}^{2}{{C}_{2}}\times {}^{5}{{C}_{3}}\times {}^{N}{{C}_{0}}+{}^{2}{{C}_{2}}\times {}^{5}{{C}_{2}}\times {}^{N}{{C}_{1}}\]
We know, \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
\[\left[ \begin{align}
& \because {}^{N}{{C}_{0}}=1 \\
& \because {}^{2}{{C}_{2}}=1 \\
\end{align} \right]\]
\[\begin{align}
& \therefore \dfrac{2!}{1!1!}\times \dfrac{5!}{1!\times 4!}\times 1+\dfrac{2!}{0!1!}\times \dfrac{5!}{2!3!}\times 1+\dfrac{2!}{0!1!}\times \dfrac{5!}{2!3!}\times N \\
& =2\times 5\times 1+1\times \dfrac{5\times 4\times 3!}{2!3!}\times 1+1\times \dfrac{5\times 4\times 3!}{2!31}\times N \\
& =10+10\times 1+10\times N \\
& =10+10+10N \\
& =20+10N \\
& =10\left( 2+N \right) \\
\end{align}\]
\[P\left( E \right)=10\left( N+2 \right)/{}^{N+7}{{C}_{5}}\]; Probability of sum of value of coin less than Rs. 1 and 50 paise.
We know, P (E) + P (not E) =1
\[\begin{align}
& P\left( E \right)+P\left( E' \right)=1 \\
& \therefore P\left( E' \right)=1-P\left( E \right)=1-\dfrac{10\left( N+2 \right)}{{}^{N+7}{{C}_{5}}} \\
\end{align}\]
\[\therefore \]Required probability \[=\dfrac{{}^{n+7}{{C}_{5}}-10\left( N+2 \right)}{{}^{n+7}{{C}_{5}}}\]
\[=1-\dfrac{10\left( N+2 \right)}{{}^{n+7}{{C}_{5}}}=1-\left\{ \dfrac{20+10N}{{}^{n+7}{{C}_{5}}} \right\}\]
Hence option (a) is the correct answer.
Note: In questions like their basic understanding of the problem is required. The total number of coins formed is \[\left( N+7 \right)\]. But we will find it difficult to understand how many coins were there in the box. You have to pick 5 coins randomly from a box consisting of 4 different sets of paisa. Find the favorable conditions for the same.
Complete step-by-step answer:
From the question, a box contains coins. It is mentioned that these are 4 types of coins, fifty paise, twenty paise, ten paise and five paise.
There are 2 fifty paise coins, 5 twenty paise coins and the rest are ten and five paise coins, where the number can be taken as N, where N is a natural number.
Therefore the total number of coins = N + 7.
2 fifty paise + 5 twenty paise + N = N + 7.
We have to take 5 coins from the box in random i.e. we have to take 5 coins from the (N + 7) coins present in the box.
\[\therefore \]5 coins can be chosen from (N + 7) coins in \[{}^{N+7}{{C}_{5}}\]ways, which is of the form \[{}^{n}{{C}_{r}}\]of combination, where no order is needed for choosing the 5 coins.
Let E denote the event that the sum of the values of the coins is less than 1 rupee and fifty paise.
Let E’ denotes the event that the total value of five coins is equal to or more than 1 rupee and 50 paise.
There are a number of favorable cases, or which we have to choose 5 coins.
1 coin from 50 paise and 4 coins from 20 paise\[\Rightarrow {}^{2}{{C}_{1}}\times {}^{5}{{C}_{4}}\times {}^{N}{{C}_{0}}\]
2 coins from 50 paise and 3 coins from 20 paise \[\Rightarrow {}^{2}{{C}_{2}}\times {}^{5}{{C}_{3}}\times {}^{N}{{C}_{0}}\]
2 coins from 50 paise, 2 coins from 20 paise and 1 from N\[\Rightarrow {}^{2}{{C}_{2}}\times {}^{5}{{C}_{2}}\times {}^{N}{{C}_{1}}\]
There 3 are the favorable cases, let us add them together.
\[{}^{2}{{C}_{1}}\times {}^{5}{{C}_{4}}\times {}^{N}{{C}_{0}}+{}^{2}{{C}_{2}}\times {}^{5}{{C}_{3}}\times {}^{N}{{C}_{0}}+{}^{2}{{C}_{2}}\times {}^{5}{{C}_{2}}\times {}^{N}{{C}_{1}}\]
We know, \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
\[\left[ \begin{align}
& \because {}^{N}{{C}_{0}}=1 \\
& \because {}^{2}{{C}_{2}}=1 \\
\end{align} \right]\]
\[\begin{align}
& \therefore \dfrac{2!}{1!1!}\times \dfrac{5!}{1!\times 4!}\times 1+\dfrac{2!}{0!1!}\times \dfrac{5!}{2!3!}\times 1+\dfrac{2!}{0!1!}\times \dfrac{5!}{2!3!}\times N \\
& =2\times 5\times 1+1\times \dfrac{5\times 4\times 3!}{2!3!}\times 1+1\times \dfrac{5\times 4\times 3!}{2!31}\times N \\
& =10+10\times 1+10\times N \\
& =10+10+10N \\
& =20+10N \\
& =10\left( 2+N \right) \\
\end{align}\]
\[P\left( E \right)=10\left( N+2 \right)/{}^{N+7}{{C}_{5}}\]; Probability of sum of value of coin less than Rs. 1 and 50 paise.
We know, P (E) + P (not E) =1
\[\begin{align}
& P\left( E \right)+P\left( E' \right)=1 \\
& \therefore P\left( E' \right)=1-P\left( E \right)=1-\dfrac{10\left( N+2 \right)}{{}^{N+7}{{C}_{5}}} \\
\end{align}\]
\[\therefore \]Required probability \[=\dfrac{{}^{n+7}{{C}_{5}}-10\left( N+2 \right)}{{}^{n+7}{{C}_{5}}}\]
\[=1-\dfrac{10\left( N+2 \right)}{{}^{n+7}{{C}_{5}}}=1-\left\{ \dfrac{20+10N}{{}^{n+7}{{C}_{5}}} \right\}\]
Hence option (a) is the correct answer.
Note: In questions like their basic understanding of the problem is required. The total number of coins formed is \[\left( N+7 \right)\]. But we will find it difficult to understand how many coins were there in the box. You have to pick 5 coins randomly from a box consisting of 4 different sets of paisa. Find the favorable conditions for the same.
Recently Updated Pages
Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

In which state Jews are not considered minors?

What is Ornithophobia?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

