Answer
Verified
445.8k+ views
Hint: Probability is a measure of the likelihood that an event will happen.
\[Probability{\text{ }} = \;\dfrac{{favorable\;outcomes}}{{possible\;outcomes}}\]
A conditional probability is the probability of one event if another event occurred. In the “die-toss” example, the probability of event A, three dots showing, is P (A) = \[\dfrac{1}{6}\] on a single toss. But what if we know that event B, at least three dots showing, occurred? Then there are only four possible outcomes, one of which is A. The probability of A = {3} is\[\dfrac{1}{4}\], given that B = {3, 4, 5, 6} occurred. The conditional probability of A given B is written P $\left( {\dfrac{A}{B}} \right)$.
The formula of conditional probability is:
$P\left( {\dfrac{A}{B}} \right) = \dfrac{{P\left( {A\bigcap B } \right)}}{{P(B)}}$
Event A is independent of B if the conditional probability of A given B is the same as the unconditional probability of A.
Complete step-by-step answer:
A black and a red dice are rolled.
Total possible outcomes =${6^2} = 36$………………… (1)
Let the A be an event obtaining a sum 8
$
\Rightarrow A = \left\{ {\left( {2,6} \right),\left( {3,5} \right),\left( {5,3} \right),\left( {4,4} \right),\left( {6,2} \right)} \right\} \\
\Rightarrow n\left( A \right) = 5 \\
$……………………… (2)
B be an event that the red die resulted in a number less than 4.
\[
\Rightarrow B =
\left\{
\left( {1,1} \right),\left( {1,2} \right),\left( {1,3} \right), \\
\left( {2,1} \right),\left( {2,2} \right),\left( {2,3} \right), \\
\left( {3,1} \right),\left( {3,2} \right),\left( {3,3} \right), \\
\left( {4,1} \right),\left( {4,2} \right),\left( {4,3} \right), \\
\left( {5,1} \right),\left( {5,2} \right),\left( {5,3} \right), \\
\left( {6,1} \right),\left( {6,2} \right),\left( {6,3} \right) \\
\right\} \\
\Rightarrow n\left( B \right) = 18 \\
\] ……………………………….(3)
Let’s find intersect when both event A and B happens by equation (2) and (3):-
$
\Rightarrow A\bigcap B = \left\{ {\left( {5,3} \right),(6,2)} \right\} \\
\Rightarrow n\left( {A\bigcap B } \right) = 2 \\
$
Probability of $A\bigcap B $= \[\dfrac{{n\left( {A\bigcap B } \right)}}{{total\;possible\;outcomes}} = \dfrac{2}{{36}}..................(1)\]
Probability of event B = P (B) =$\dfrac{{18}}{{36}}$………………………….(2)
Using the formula mentioned in the hint of conditional probability and putting the values of equation (1) and (2).
$
P\left( {\dfrac{A}{B}} \right) = \dfrac{{P\left( {A\bigcap B } \right)}}{{P(B)}} \\
\Rightarrow P\left( {\dfrac{A}{B}} \right) = \dfrac{{\dfrac{2}{{36}}}}{{\dfrac{{18}}{{36}}}} \\
\Rightarrow P\left( {\dfrac{A}{B}} \right) = \dfrac{1}{9} \\
$
The conditional probability of obtaining the sum 8, given that the red die resulted in a number less than 4 is $\dfrac{1}{9}$
Note: Conditional probability is used in many areas, in fields as diverse as calculus, insurance, and politics. For example, the re-election of a president depends upon the voting preference of voters and perhaps the success of television advertising—even the probability of the opponent making gaffes during debates!
\[Probability{\text{ }} = \;\dfrac{{favorable\;outcomes}}{{possible\;outcomes}}\]
A conditional probability is the probability of one event if another event occurred. In the “die-toss” example, the probability of event A, three dots showing, is P (A) = \[\dfrac{1}{6}\] on a single toss. But what if we know that event B, at least three dots showing, occurred? Then there are only four possible outcomes, one of which is A. The probability of A = {3} is\[\dfrac{1}{4}\], given that B = {3, 4, 5, 6} occurred. The conditional probability of A given B is written P $\left( {\dfrac{A}{B}} \right)$.
The formula of conditional probability is:
$P\left( {\dfrac{A}{B}} \right) = \dfrac{{P\left( {A\bigcap B } \right)}}{{P(B)}}$
Event A is independent of B if the conditional probability of A given B is the same as the unconditional probability of A.
Complete step-by-step answer:
A black and a red dice are rolled.
Total possible outcomes =${6^2} = 36$………………… (1)
Let the A be an event obtaining a sum 8
$
\Rightarrow A = \left\{ {\left( {2,6} \right),\left( {3,5} \right),\left( {5,3} \right),\left( {4,4} \right),\left( {6,2} \right)} \right\} \\
\Rightarrow n\left( A \right) = 5 \\
$……………………… (2)
B be an event that the red die resulted in a number less than 4.
\[
\Rightarrow B =
\left\{
\left( {1,1} \right),\left( {1,2} \right),\left( {1,3} \right), \\
\left( {2,1} \right),\left( {2,2} \right),\left( {2,3} \right), \\
\left( {3,1} \right),\left( {3,2} \right),\left( {3,3} \right), \\
\left( {4,1} \right),\left( {4,2} \right),\left( {4,3} \right), \\
\left( {5,1} \right),\left( {5,2} \right),\left( {5,3} \right), \\
\left( {6,1} \right),\left( {6,2} \right),\left( {6,3} \right) \\
\right\} \\
\Rightarrow n\left( B \right) = 18 \\
\] ……………………………….(3)
Let’s find intersect when both event A and B happens by equation (2) and (3):-
$
\Rightarrow A\bigcap B = \left\{ {\left( {5,3} \right),(6,2)} \right\} \\
\Rightarrow n\left( {A\bigcap B } \right) = 2 \\
$
Probability of $A\bigcap B $= \[\dfrac{{n\left( {A\bigcap B } \right)}}{{total\;possible\;outcomes}} = \dfrac{2}{{36}}..................(1)\]
Probability of event B = P (B) =$\dfrac{{18}}{{36}}$………………………….(2)
Using the formula mentioned in the hint of conditional probability and putting the values of equation (1) and (2).
$
P\left( {\dfrac{A}{B}} \right) = \dfrac{{P\left( {A\bigcap B } \right)}}{{P(B)}} \\
\Rightarrow P\left( {\dfrac{A}{B}} \right) = \dfrac{{\dfrac{2}{{36}}}}{{\dfrac{{18}}{{36}}}} \\
\Rightarrow P\left( {\dfrac{A}{B}} \right) = \dfrac{1}{9} \\
$
The conditional probability of obtaining the sum 8, given that the red die resulted in a number less than 4 is $\dfrac{1}{9}$
Note: Conditional probability is used in many areas, in fields as diverse as calculus, insurance, and politics. For example, the re-election of a president depends upon the voting preference of voters and perhaps the success of television advertising—even the probability of the opponent making gaffes during debates!
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE