Answer
Verified
429.3k+ views
Hint:
In this question first we will find the volume of the right circular cylinder and volume of its hemispherical ends and then we will find the volume of the cylinder and its hemispherical ends when length and radius is changed. And finally we will find the percentage change in the volume of the right circular cylinder.
Formula used:
The volume of the cylinder is given by $\pi {r^2}h$ and the volume of hemisphere is given by $\dfrac{2}{3}\pi {r^3}$ .
Complete step by step solution:
The radius of the cylinder is given $1.5\,m$ and its length is $4\,m$ .
The formula for volume of cylinder is given by $\pi {r^2}h$
Put the value of radius and length in the above formula.
$ \Rightarrow \pi {\left( {1.5} \right)^2}\left( 4 \right) = 9\pi \,{m^3}$
The formula for volume of hemisphere is $\dfrac{2}{3}\pi {r^3}$.
$ \Rightarrow \dfrac{2}{3}\pi {\left( {1.5} \right)^3} = 2.25\pi \,{m^3}$
Therefore, the total volume is $ = 9\pi \,{m^3} + 2.25\pi \,{m^3} = 11.25\pi \,{m^3}$ .
Now, radius becomes $r = 1.5\,m + 0.01\,m = 1.51\,m$ and the length becomes $h = 4\,m + 0.05\,m = 4.05\,m$ . Volume of the cylinder after the increase in radius and length is:
$ \Rightarrow \pi {\left( {1.51} \right)^2}\left( {4.05} \right) = 9.234405\pi \,{m^3}$
Now, the volume of the hemisphere becomes
$ \Rightarrow \dfrac{2}{3}\pi {\left( {1.51} \right)^3} = 2.2953\pi \,{m^3}$
Therefore, the total volume is $ = 9.234405\pi \,{m^3} + 2.2953\pi \,{m^3} = 11.529705\pi \,{m^3}$ .
Now, change in percentage is :
$ \Rightarrow \dfrac{{\left( {11.529705\pi - 11.25\pi } \right)}}{{11.25\pi }} \times 100 = 2.48\% $
Therefore, the change in percentage is $2.48\% $
Hence, the correct option is (B).
Note:
The percentage change in volume is calculated on the original volume of the balloon and it is not calculated on the volume of the balloon after the change in radius and length. The important thing in this question is that we have to find the total volume of the balloon and it depends on the shape of the balloon i.e. in our case the balloon is cylindrical and hemispherical both. So we have to find the volume of cylinder and hemisphere to calculate the total volume of the balloon.
In this question first we will find the volume of the right circular cylinder and volume of its hemispherical ends and then we will find the volume of the cylinder and its hemispherical ends when length and radius is changed. And finally we will find the percentage change in the volume of the right circular cylinder.
Formula used:
The volume of the cylinder is given by $\pi {r^2}h$ and the volume of hemisphere is given by $\dfrac{2}{3}\pi {r^3}$ .
Complete step by step solution:
The radius of the cylinder is given $1.5\,m$ and its length is $4\,m$ .
The formula for volume of cylinder is given by $\pi {r^2}h$
Put the value of radius and length in the above formula.
$ \Rightarrow \pi {\left( {1.5} \right)^2}\left( 4 \right) = 9\pi \,{m^3}$
The formula for volume of hemisphere is $\dfrac{2}{3}\pi {r^3}$.
$ \Rightarrow \dfrac{2}{3}\pi {\left( {1.5} \right)^3} = 2.25\pi \,{m^3}$
Therefore, the total volume is $ = 9\pi \,{m^3} + 2.25\pi \,{m^3} = 11.25\pi \,{m^3}$ .
Now, radius becomes $r = 1.5\,m + 0.01\,m = 1.51\,m$ and the length becomes $h = 4\,m + 0.05\,m = 4.05\,m$ . Volume of the cylinder after the increase in radius and length is:
$ \Rightarrow \pi {\left( {1.51} \right)^2}\left( {4.05} \right) = 9.234405\pi \,{m^3}$
Now, the volume of the hemisphere becomes
$ \Rightarrow \dfrac{2}{3}\pi {\left( {1.51} \right)^3} = 2.2953\pi \,{m^3}$
Therefore, the total volume is $ = 9.234405\pi \,{m^3} + 2.2953\pi \,{m^3} = 11.529705\pi \,{m^3}$ .
Now, change in percentage is :
$ \Rightarrow \dfrac{{\left( {11.529705\pi - 11.25\pi } \right)}}{{11.25\pi }} \times 100 = 2.48\% $
Therefore, the change in percentage is $2.48\% $
Hence, the correct option is (B).
Note:
The percentage change in volume is calculated on the original volume of the balloon and it is not calculated on the volume of the balloon after the change in radius and length. The important thing in this question is that we have to find the total volume of the balloon and it depends on the shape of the balloon i.e. in our case the balloon is cylindrical and hemispherical both. So we have to find the volume of cylinder and hemisphere to calculate the total volume of the balloon.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell