Answer
Verified
494.4k+ views
Hint: In order to solve this question first, find the sum of the ratio of 1, 2 and 3 rupee coins then divide the total number of coins in the ratio of 3:2:5 to get the number of 1, 2 and 3 rupee coins.
Complete step-by-step answer:
There are a total of 3150 coins in the bag.
The sum of the ratios of 1, 2 and 3 rupee coins is 3+2+5=10.
Then the numbers of 1 rupee coins will be $\dfrac{3}{{10}}$ part of 3150.
So, we do $\dfrac{3}{{10}}$x3150 = 945.
Therefore there are 945 coins of 1 rupee in the bag.
The numbers of 2 rupee coins will be $\dfrac{2}{{10}}$ part of 3150.
So, we do $\dfrac{2}{{10}}$x3150 = 630.
Therefore there are 630 coins of 2 rupee in the bag.
The numbers of 3 rupee coins will be $\dfrac{5}{{10}}$ part of 3150.
So, we do $\dfrac{5}{{10}}$x3150 =1575.
Therefore there are 1575 coins of 3 rupee in the bag.
Note: To solve these type of problems in which items divided in ratios are given and the total number of items are also given, to calculate the number of particular item we have to multiply the ratio upon the sum of ratios of all the item with the total number of items to get the number of that particular item. Similarly we can find the number of other items this way.
Complete step-by-step answer:
There are a total of 3150 coins in the bag.
The sum of the ratios of 1, 2 and 3 rupee coins is 3+2+5=10.
Then the numbers of 1 rupee coins will be $\dfrac{3}{{10}}$ part of 3150.
So, we do $\dfrac{3}{{10}}$x3150 = 945.
Therefore there are 945 coins of 1 rupee in the bag.
The numbers of 2 rupee coins will be $\dfrac{2}{{10}}$ part of 3150.
So, we do $\dfrac{2}{{10}}$x3150 = 630.
Therefore there are 630 coins of 2 rupee in the bag.
The numbers of 3 rupee coins will be $\dfrac{5}{{10}}$ part of 3150.
So, we do $\dfrac{5}{{10}}$x3150 =1575.
Therefore there are 1575 coins of 3 rupee in the bag.
Note: To solve these type of problems in which items divided in ratios are given and the total number of items are also given, to calculate the number of particular item we have to multiply the ratio upon the sum of ratios of all the item with the total number of items to get the number of that particular item. Similarly we can find the number of other items this way.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE