Answer
Verified
494.1k+ views
Hint – In this question first find out the numbers which are multiple of 3 or 4 from the numbers which are given which are the favorable outcomes, then divide these favorable outcomes to the total given numbers, use this concept to reach the solution of the problem.
Given data
A bag contains 20 balls numbered from 1 to 20.
Therefore total number of balls $ = 20$.
Now we have to find the probability that the ball drawn is marked with a number which is multiple of 3 or 4.
From 1 to 20 multiple of 3 is (3, 6, 9, 12, 15, and 18).
So there are 6 favorable ways.
From 1 to 20 multiple of 4 is (4, 8, 12, 16 and 20).
So there are 5 favorable ways.
Now as we see that 12 is a multiple of both 3 and 4, so it is considered only one time.
Therefore total number of favorable ways $ = 6 + 5 - 1 = 10$
So, the required probability that the ball drawn is marked with a number which is multiple of 3 or 4.
$ = \dfrac{{{\text{Favorable number of outcomes}}}}{{{\text{Total outcomes}}}} = \dfrac{{10}}{{20}} = \dfrac{1}{2}$
So, $\dfrac{1}{2}$ is the required probability.
Note – In such types of questions the key concept we have to remember is that always recall the formula of probability which is stated above then first find out the number of favorable ways after that use the probability formula and simplify, we will get the required answer.
Given data
A bag contains 20 balls numbered from 1 to 20.
Therefore total number of balls $ = 20$.
Now we have to find the probability that the ball drawn is marked with a number which is multiple of 3 or 4.
From 1 to 20 multiple of 3 is (3, 6, 9, 12, 15, and 18).
So there are 6 favorable ways.
From 1 to 20 multiple of 4 is (4, 8, 12, 16 and 20).
So there are 5 favorable ways.
Now as we see that 12 is a multiple of both 3 and 4, so it is considered only one time.
Therefore total number of favorable ways $ = 6 + 5 - 1 = 10$
So, the required probability that the ball drawn is marked with a number which is multiple of 3 or 4.
$ = \dfrac{{{\text{Favorable number of outcomes}}}}{{{\text{Total outcomes}}}} = \dfrac{{10}}{{20}} = \dfrac{1}{2}$
So, $\dfrac{1}{2}$ is the required probability.
Note – In such types of questions the key concept we have to remember is that always recall the formula of probability which is stated above then first find out the number of favorable ways after that use the probability formula and simplify, we will get the required answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE