
A 5m 60cm high vertical pole casts a shadow 3m 20cm long .Find at the same time (i) the length of shadow cast by another pole 10m 50cm high (ii) the height of a pole which casts a shadow 5m long.
Answer
609.9k+ views
Hint: use the concept of direct linear variation
It has been given that a $5m{\text{ 60cm}}$high vertical pole is casting a shadow $3m{\text{ 20cm}}$long.
Now in first part we need to find the length of shadow cast by another pole which has a height of $10m{\text{ 50cm}}$
Let $x{\text{ m}}$be the length of the shadow that is cast by the pole of height$10m{\text{ 50cm}}$.
In the second part we have to tell the height of a pole which casts a shadow $5{\text{ m}}$long.
So let $y{\text{ m}}$be the height of the pole whose shadow is $5{\text{ m}}$long.
Now clearly it is a case of direct linear variation that is change in one entity directly changes another entity
So $\frac{{{\text{height of pol}}{{\text{e}}_1}}}{{length{\text{ of shado}}{{\text{w}}_1}}} = \dfrac{{{\text{height of pol}}{{\text{e}}_2}}}{{length{\text{ of shado}}{{\text{w}}_2}}}$
$ \Rightarrow \dfrac{{5.60}}{{3.20}} = \dfrac{{10.50}}{x}$ $\left[ {5m{\text{ 60cm = 5}}{\text{.60m}}} \right]$
Solving for x we get
$x = \dfrac{{10.50 \times 3.20}}{{5.60}} = 6$
Hence length of shadow cast by pole of height $10{\text{m 50cm}}$is 6m
Now again in second part is a case of direct linear variation that is change in one entity directly changes another entity we can write
$\dfrac{{{\text{height of pol}}{{\text{e}}_1}}}{{length{\text{ of shado}}{{\text{w}}_1}}} = \dfrac{{{\text{height of pol}}{{\text{e}}_3}}}{{length{\text{ of shado}}{{\text{w}}_3}}}$
$ \Rightarrow \dfrac{{5.60}}{{3.20}} = \dfrac{y}{5}$ $\left[ {5m{\text{ 60cm = 5}}{\text{.60m}}} \right]$
Solving for y we get
$y = \dfrac{{5.60 \times 5}}{{3.20}} = 8.75$
So height of pole which cast a shadow of length 5 m is 8.75m
Note- Whenever we come across such problem statements, the key concept is to think towards direct linear variation which states that change in one entity eventually directly changes another entity, this helps you reach the right solution.
It has been given that a $5m{\text{ 60cm}}$high vertical pole is casting a shadow $3m{\text{ 20cm}}$long.
Now in first part we need to find the length of shadow cast by another pole which has a height of $10m{\text{ 50cm}}$
Let $x{\text{ m}}$be the length of the shadow that is cast by the pole of height$10m{\text{ 50cm}}$.
In the second part we have to tell the height of a pole which casts a shadow $5{\text{ m}}$long.
So let $y{\text{ m}}$be the height of the pole whose shadow is $5{\text{ m}}$long.
Now clearly it is a case of direct linear variation that is change in one entity directly changes another entity
So $\frac{{{\text{height of pol}}{{\text{e}}_1}}}{{length{\text{ of shado}}{{\text{w}}_1}}} = \dfrac{{{\text{height of pol}}{{\text{e}}_2}}}{{length{\text{ of shado}}{{\text{w}}_2}}}$
$ \Rightarrow \dfrac{{5.60}}{{3.20}} = \dfrac{{10.50}}{x}$ $\left[ {5m{\text{ 60cm = 5}}{\text{.60m}}} \right]$
Solving for x we get
$x = \dfrac{{10.50 \times 3.20}}{{5.60}} = 6$
Hence length of shadow cast by pole of height $10{\text{m 50cm}}$is 6m
Now again in second part is a case of direct linear variation that is change in one entity directly changes another entity we can write
$\dfrac{{{\text{height of pol}}{{\text{e}}_1}}}{{length{\text{ of shado}}{{\text{w}}_1}}} = \dfrac{{{\text{height of pol}}{{\text{e}}_3}}}{{length{\text{ of shado}}{{\text{w}}_3}}}$
$ \Rightarrow \dfrac{{5.60}}{{3.20}} = \dfrac{y}{5}$ $\left[ {5m{\text{ 60cm = 5}}{\text{.60m}}} \right]$
Solving for y we get
$y = \dfrac{{5.60 \times 5}}{{3.20}} = 8.75$
So height of pole which cast a shadow of length 5 m is 8.75m
Note- Whenever we come across such problem statements, the key concept is to think towards direct linear variation which states that change in one entity eventually directly changes another entity, this helps you reach the right solution.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

