
What is \[8\] to the third power times \[8\] to the negative \[10\] power?
Answer
513.9k+ views
Hint:Powers and Indices are other names for exponents. Exponential notation is a form of mathematical shorthand that helps us to express complex expressions in a more concise manner.
Complete step by step answer:
An exponent is a number or letter that is written above and to the right of the base in a mathematical expression. It denotes that the base will be lifted to a certain level of strength.The base is $x$, and the exponent or power is $n$.
Firstly we should multiply exponents with the same base,and then the exponents are added.
So we can take a look at the below answers obtained.
\[{8^3}\,.\,{8^{ - 10}}\, \to \,3 + \,( - 10)\, = \, - 7\, \to \,{8^{ - 7}}\]
\[ = > \,{8^{ - 7}}\]
And hence we successfully found the answer.
A positive exponent indicates how many times a base number should be multiplied, while a negative exponent indicates how many times a base number should be divided. A negative exponent indicates how many times the number should be divided by. We can use the Reciprocal (i.e.\[{\text{1/}}{{\text{a}}^{\text{n}}}\]) to alter the sign of the exponent (plus to minus, or minus to plus). A negative exponent indicates that a basis is on the fraction line's denominator side.
Hence, we found that \[8\] to the third power times \[8\] to the negative \[10\] power is \[{8^{ - 7}}\].
Note: The negative exponent rule states that a negative exponent number should be placed in the denominator and vice versa. Another way to find the exponential is to start with "1" and multiply or divide by the exponent as many times as it says, and you will get the correct answer. For example:
\[{5^2} = \,1\,\, \times \,\,5\, \times \,5\, = \,25\]
\[{5^{ - 1}}\, = \,1\, \div \,5\]
Complete step by step answer:
An exponent is a number or letter that is written above and to the right of the base in a mathematical expression. It denotes that the base will be lifted to a certain level of strength.The base is $x$, and the exponent or power is $n$.
Firstly we should multiply exponents with the same base,and then the exponents are added.
So we can take a look at the below answers obtained.
\[{8^3}\,.\,{8^{ - 10}}\, \to \,3 + \,( - 10)\, = \, - 7\, \to \,{8^{ - 7}}\]
\[ = > \,{8^{ - 7}}\]
And hence we successfully found the answer.
A positive exponent indicates how many times a base number should be multiplied, while a negative exponent indicates how many times a base number should be divided. A negative exponent indicates how many times the number should be divided by. We can use the Reciprocal (i.e.\[{\text{1/}}{{\text{a}}^{\text{n}}}\]) to alter the sign of the exponent (plus to minus, or minus to plus). A negative exponent indicates that a basis is on the fraction line's denominator side.
Hence, we found that \[8\] to the third power times \[8\] to the negative \[10\] power is \[{8^{ - 7}}\].
Note: The negative exponent rule states that a negative exponent number should be placed in the denominator and vice versa. Another way to find the exponential is to start with "1" and multiply or divide by the exponent as many times as it says, and you will get the correct answer. For example:
\[{5^2} = \,1\,\, \times \,\,5\, \times \,5\, = \,25\]
\[{5^{ - 1}}\, = \,1\, \div \,5\]
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who among the following opened first school for girls class 9 social science CBSE

What does the word meridian mean A New day B Midday class 9 social science CBSE

What is the full form of pH?

Write the 6 fundamental rights of India and explain in detail

Which places in India experience sunrise first and class 9 social science CBSE

