Answer
Verified
424.8k+ views
Hint: Here the given question is the form of exponent. We have to find the equivalent number to the given number \[{32^{\dfrac{1}{5}}}\] . first find the factor or roots of 32 and further simplify using the one of the rules of law of indices \[{\left( {{x^m}} \right)^n} = {x^{mn}}\] we get the required answer which is equivalent to the given number.
Complete step-by-step solution:
Exponential notation is an alternative method of expressing numbers. Exponential numbers take the form an, where a is multiplied by itself n times. In exponential notation, a is termed the base while n is termed the power or exponent or index
Consider the given exponent number
\[ \Rightarrow \,\,{32^{\dfrac{1}{5}}}\]
32 is the 5th root of 2 i.e., 2\[ \times \]2\[ \times \]2\[ \times \]2\[ \times \]2 = 32
Hence, 32 can be written in the form of an exponential number as \[32 = {2^5}\].
\[ \Rightarrow \,{\left( {{2^5}} \right)^{\dfrac{1}{5}}}\]
By applying one of the rule of law of indices If a term with a power is itself raised to a power then the powers are multiplied together. i.e., \[{\left( {{x^m}} \right)^n} = {x^{m \times n}}\]
\[ \Rightarrow \,{2^{\dfrac{5}{5}}}\]
We can cancel the number 5, since it is present in both numerator and the denominator. On simplification, we get
\[ \Rightarrow \,{2^1}\]
As we know the any number to the power 1 which is equal to same number
\[ \Rightarrow \,2\]
Hence, \[{32^{\dfrac{1}{5}}}\] the number which is equal to 2.
Note: When we want to find the fifth root of some number, and if possible we write the number in the form of exponential and then we simplify the number. While determining the roots we have different methods for the different root values. The best way is to factorise the given number then it is easy to solve the number.
Complete step-by-step solution:
Exponential notation is an alternative method of expressing numbers. Exponential numbers take the form an, where a is multiplied by itself n times. In exponential notation, a is termed the base while n is termed the power or exponent or index
Consider the given exponent number
\[ \Rightarrow \,\,{32^{\dfrac{1}{5}}}\]
32 is the 5th root of 2 i.e., 2\[ \times \]2\[ \times \]2\[ \times \]2\[ \times \]2 = 32
Hence, 32 can be written in the form of an exponential number as \[32 = {2^5}\].
\[ \Rightarrow \,{\left( {{2^5}} \right)^{\dfrac{1}{5}}}\]
By applying one of the rule of law of indices If a term with a power is itself raised to a power then the powers are multiplied together. i.e., \[{\left( {{x^m}} \right)^n} = {x^{m \times n}}\]
\[ \Rightarrow \,{2^{\dfrac{5}{5}}}\]
We can cancel the number 5, since it is present in both numerator and the denominator. On simplification, we get
\[ \Rightarrow \,{2^1}\]
As we know the any number to the power 1 which is equal to same number
\[ \Rightarrow \,2\]
Hence, \[{32^{\dfrac{1}{5}}}\] the number which is equal to 2.
Note: When we want to find the fifth root of some number, and if possible we write the number in the form of exponential and then we simplify the number. While determining the roots we have different methods for the different root values. The best way is to factorise the given number then it is easy to solve the number.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE