
Yellow light emitted from sodium vapour lamps has wavelength 580 nm. Calculate wavelength, frequency and time period of radiation.
Answer
585.6k+ views
Hint: Sodium comes under alkali metals whose ionization energy is very low. So, it tends to release its electron easily. Due to that electron, the radiations are being emitted. By sodium metal, light of yellow colour is emitted. The radiation of light emitted is an electromagnetic wave. The formula to be used here is $\text{c = }\lambda \times \nu $, where c is the speed of light, $\nu $ is the frequency and $\lambda $ is the wavelength.
Complete answer:
-The time taken by periodic motion to complete one cycle is the time period. The S.I. unit is second.
-Frequency is the number of waves completed in a given length of time. It is measured as the number of wave cycles per second or hertz.
- Wavelength is the distance between the two adjacent crests or troughs of a wave. The distance is in meters. Electromagnetic waves or radiations travel with the speed of light. Wavelength, frequency and time period all three are related terms. Let us see their relation:
-Time period is reciprocal of frequency. $\text{Time period = }\dfrac{1}{\text{frequency}}$.
- When wavelength is multiplied to frequency, it gives velocity. $\text{v = f}\times \lambda $, here v is equal to c. So, $\text{c = f}\times \lambda $.
Now, by applying these relations, let us find the answers. Wavelength of radiation is given as 580nm. Frequency will be equal to $\dfrac{3\times {{10}^{8}}}{580\times {{10}^{-9}}}$; nm is ${{10}^{-9}}\text{m}$. The value of frequency is $\text{5}\text{.17}\times \text{1}{{\text{0}}^{14}}\text{ se}{{\text{c}}^{-1}}$. The time period will be $\dfrac{1}{\text{frequency}}$, which is $\dfrac{1}{5.17\times {{10}^{14}}}$ equals $1.93\times {{10}^{-15}}\text{ seconds}$.
The frequency and time period of the radiation is $\text{5}\text{.17}\times \text{1}{{\text{0}}^{14}}\text{ se}{{\text{c}}^{-1}}$ and $1.93\times {{10}^{-15}}\text{ seconds}$.
Note: The value of velocity is taken as $3\times {{10}^{8}}$m/s which is the velocity of light is taken because here we are talking electromagnetic radiation. All the electromagnetic waves travel with the speed of light. Light or any radiation is a type of electromagnetic wave. So, use$\text{v = c = 3}\times \text{1}{{\text{0}}^{8}}\text{m/s}$, when the wave seems to be electromagnetic in nature. Otherwise, $\text{vc}$.
Complete answer:
-The time taken by periodic motion to complete one cycle is the time period. The S.I. unit is second.
-Frequency is the number of waves completed in a given length of time. It is measured as the number of wave cycles per second or hertz.
- Wavelength is the distance between the two adjacent crests or troughs of a wave. The distance is in meters. Electromagnetic waves or radiations travel with the speed of light. Wavelength, frequency and time period all three are related terms. Let us see their relation:
-Time period is reciprocal of frequency. $\text{Time period = }\dfrac{1}{\text{frequency}}$.
- When wavelength is multiplied to frequency, it gives velocity. $\text{v = f}\times \lambda $, here v is equal to c. So, $\text{c = f}\times \lambda $.
Now, by applying these relations, let us find the answers. Wavelength of radiation is given as 580nm. Frequency will be equal to $\dfrac{3\times {{10}^{8}}}{580\times {{10}^{-9}}}$; nm is ${{10}^{-9}}\text{m}$. The value of frequency is $\text{5}\text{.17}\times \text{1}{{\text{0}}^{14}}\text{ se}{{\text{c}}^{-1}}$. The time period will be $\dfrac{1}{\text{frequency}}$, which is $\dfrac{1}{5.17\times {{10}^{14}}}$ equals $1.93\times {{10}^{-15}}\text{ seconds}$.
The frequency and time period of the radiation is $\text{5}\text{.17}\times \text{1}{{\text{0}}^{14}}\text{ se}{{\text{c}}^{-1}}$ and $1.93\times {{10}^{-15}}\text{ seconds}$.
Note: The value of velocity is taken as $3\times {{10}^{8}}$m/s which is the velocity of light is taken because here we are talking electromagnetic radiation. All the electromagnetic waves travel with the speed of light. Light or any radiation is a type of electromagnetic wave. So, use$\text{v = c = 3}\times \text{1}{{\text{0}}^{8}}\text{m/s}$, when the wave seems to be electromagnetic in nature. Otherwise, $\text{vc}$.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

