Answer
Verified
426.3k+ views
Hint:Use the given solution \[{y_1} = \sin 3x\] to predict the required solution. Consider $y = a\sin x$ and find its single and double derivative then and use the given differential equation to simplify it. Then separate the variables and integrate them by substitution method and finally put the integrated value into the considered variable to get the solution.
Complete step by step solution:
We have given \[{y_1} = \sin 3x\] as one of the solution of the given differential equation $y'' + 9y = 0$, so we will assume $y = a\sin 3x$ to be its general solution, then
$
y' = a'\sin 3x + 3a\cos 3x\mathfrak{A} \\
{\text{And}}\; \\
y'' = a''\sin x + 3a'\cos x + 3a'\cos x - 9a\sin x \\
\Rightarrow y'' = a''\sin x + 6a'\cos x - 9a\sin x \\
$
From the given differential equation we know that,
$y'' + 9y = 0 \Rightarrow y'' = - 9y$
And also we have assumed $y = a\sin 3x$
$ \Rightarrow y'' = - 9\sin 3x$
Now putting this in the above equation, we will get
\[
\Rightarrow y'' = a''\sin x + 6a'\cos x - 9a\sin x \\
\Rightarrow - 9a\sin 3x = a''\sin x + 6a'\cos x - 9a\sin x \\
\Rightarrow a''\sin x + 6a'\cos x = 0 \\
\]
So we have reduced it to linear differential equation in terms of $a'$
We can also express the above expression as
\[ \Rightarrow \dfrac{{a''}}{{a'}} + \dfrac{{6\cos x}}{{\sin x}} = 0\]
After integrating both sides we will get
$ \Rightarrow \ln a' + 2\ln (\sin 3x) = \ln ( - 3{c_1})$
Using property of log, we can further write it as
$
\Rightarrow \ln a' + \ln ({\sin ^2}3x) = \ln ( - 3{c_1}) \\
\Rightarrow \ln (a'{\sin ^2}3x) = \ln ( - 3{c_1}) \\
$
Taking exponent to the base e both sides,
$
\Rightarrow {e^{\ln (a'{{\sin }^2}3x)}} = {e^{\ln ( - 3{c_1})}} \\
\Rightarrow a'{\sin ^2}3x = - 3{c_1} \\
\Rightarrow a' = \dfrac{{ - 3{c_1}}}{{{{\sin }^2}3x}} \\
$
Again integrating both sides, we will get
\[
\Rightarrow \int {a'} = \int {\dfrac{{ - 3{c_1}}}{{{{\sin }^2}3x}}} \\
\Rightarrow a = {c_1}\cot 3x + {c_2} \\
\]
So we have got the value of $a$
Putting this in $y = a\sin 3x$,
$
\Rightarrow y = ({c_1}\cot 3x + {c_2})\sin 3x \\
\Rightarrow y = {c_1}\cos 3x + {c_2}\sin 3x \\
$
So this is the required solution for the differential equation $y'' + 9y = 0$
Note: You can take anything for the constant part after integrating any function according to your use. As we have taken $\ln ( - 3{c_1})$ as the constant, because all the integrated terms in terms of log,\ so we have also taken the constant as log and also for further integration process we have taken $ - 3{c_1}$ so that the result will come out to be simplified and have less terms.
Complete step by step solution:
We have given \[{y_1} = \sin 3x\] as one of the solution of the given differential equation $y'' + 9y = 0$, so we will assume $y = a\sin 3x$ to be its general solution, then
$
y' = a'\sin 3x + 3a\cos 3x\mathfrak{A} \\
{\text{And}}\; \\
y'' = a''\sin x + 3a'\cos x + 3a'\cos x - 9a\sin x \\
\Rightarrow y'' = a''\sin x + 6a'\cos x - 9a\sin x \\
$
From the given differential equation we know that,
$y'' + 9y = 0 \Rightarrow y'' = - 9y$
And also we have assumed $y = a\sin 3x$
$ \Rightarrow y'' = - 9\sin 3x$
Now putting this in the above equation, we will get
\[
\Rightarrow y'' = a''\sin x + 6a'\cos x - 9a\sin x \\
\Rightarrow - 9a\sin 3x = a''\sin x + 6a'\cos x - 9a\sin x \\
\Rightarrow a''\sin x + 6a'\cos x = 0 \\
\]
So we have reduced it to linear differential equation in terms of $a'$
We can also express the above expression as
\[ \Rightarrow \dfrac{{a''}}{{a'}} + \dfrac{{6\cos x}}{{\sin x}} = 0\]
After integrating both sides we will get
$ \Rightarrow \ln a' + 2\ln (\sin 3x) = \ln ( - 3{c_1})$
Using property of log, we can further write it as
$
\Rightarrow \ln a' + \ln ({\sin ^2}3x) = \ln ( - 3{c_1}) \\
\Rightarrow \ln (a'{\sin ^2}3x) = \ln ( - 3{c_1}) \\
$
Taking exponent to the base e both sides,
$
\Rightarrow {e^{\ln (a'{{\sin }^2}3x)}} = {e^{\ln ( - 3{c_1})}} \\
\Rightarrow a'{\sin ^2}3x = - 3{c_1} \\
\Rightarrow a' = \dfrac{{ - 3{c_1}}}{{{{\sin }^2}3x}} \\
$
Again integrating both sides, we will get
\[
\Rightarrow \int {a'} = \int {\dfrac{{ - 3{c_1}}}{{{{\sin }^2}3x}}} \\
\Rightarrow a = {c_1}\cot 3x + {c_2} \\
\]
So we have got the value of $a$
Putting this in $y = a\sin 3x$,
$
\Rightarrow y = ({c_1}\cot 3x + {c_2})\sin 3x \\
\Rightarrow y = {c_1}\cos 3x + {c_2}\sin 3x \\
$
So this is the required solution for the differential equation $y'' + 9y = 0$
Note: You can take anything for the constant part after integrating any function according to your use. As we have taken $\ln ( - 3{c_1})$ as the constant, because all the integrated terms in terms of log,\ so we have also taken the constant as log and also for further integration process we have taken $ - 3{c_1}$ so that the result will come out to be simplified and have less terms.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE