Answer

Verified

339.9k+ views

**Hint:**We are given a line whose x intercept and y-intercept is given. Here the x-intercept means $ y = 0 $ and y-intercept means $ x = 0 $ .

X intercept means $ \left( {x,0} \right) $ and y-intercept means $ \left( {0,y} \right) $ . As we got two coordinates then we can find the slope of the line using the formula.

\[m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\]

Here \[m\]is the slope, \[{y_2}\& {\text{ }}{y_1}\]are the\[\;y\] coordinates.\[{x_1}and{\text{ }}{x_2}\]are the \[x\]coordinates.

Then using the slope intercept form of the equation of a line i.e.\[y = mx + b\].

Here \[m\]is the slope, \[b\]is the y-intercept. Then using the values we can substitute in the equation and form the standard equation of the line.

**Complete step by step answer:**

We are given\[x\]intercept $ = 3 $ and \[y\]intercept $ = 2 $ of a line. We have to find its standard form of the equation.

Here x-intercept means $ \left( {x,0} \right) $ i.e. $ \left( {3,0} \right) $ and y-intercept means $ \left( {0,y} \right) $ i.e. $ \left( {0,2} \right) $ . Hence we get two coordinates now using the formula of slope first we will find the slope of the line.

Using the formula of slope \[m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\]

Here $ {y_1} = 0,{y_2} = 2,{x_1} = 3,{x_2} = 0 $ on substituting these values in the formula we will get:

$ \Rightarrow m = \dfrac{{\Delta y}}{{\Delta x}} = \dfrac{{2 - 0}}{{0 - 3}} $

On further solving we will get:

$ \Rightarrow m = \dfrac{{ - 2}}{3} $

Then we will use the slope intercept form of the equation of a line is:

\[y = mx + c\]

Here $ m = \dfrac{{ - 2}}{3};c = 2 $

Therefore on substituting the value in the equation. Therefore the equation of this line can be written as:

$ \Rightarrow y = \dfrac{{ - 2}}{3}x + 2 $

Multiplying both the sides by \[3\]to clear the fraction the equation can be re-written as:

$ \Rightarrow 3y = 2x + 6 $

Hence the standard equation is $ 3y = 2x + 6 $

**Note:**In such type questions mainly get confused by reading the word intercepts. Here given x- intercept and y- intercept should be converted into the coordinate form. By using that coordinate form we can easily solve the whole question. If only one intercept i.e. x-intercept is given then by substituting \[x\] equals to zero in the equation we can find the value of\[y\]intercept or vice versa and then from the equation.

Recently Updated Pages

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE

Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE

What are the possible quantum number for the last outermost class 11 chemistry CBSE

Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE

What happens when entropy reaches maximum class 11 chemistry JEE_Main

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE

Difference Between Plant Cell and Animal Cell

Can anyone list 10 advantages and disadvantages of friction

State and prove Bernoullis theorem class 11 physics CBSE

The ice floats on water because A solid have lesser class 9 chemistry CBSE

State Newtons formula for the velocity of sound in class 11 physics CBSE