Answer
Verified
426.6k+ views
Hint: The above question is based on the concept of logarithm. The main approach towards solving the question is by applying various logarithmic properties on the above given expression. Properties like quotient rule and power rule are applied to the expression and further it is simplified.
Complete step by step solution:
Logarithms, like exponents, have many useful properties that can be used to reduce by simplifying logarithmic expressions and solve logarithmic equations. Logarithm is the exponent or power to which base must be raised to yield a given number. When expressed mathematically x is the logarithm of base n to the base b if \[{b^x} = n\] ,then we can write it as \[x = {\log _b}n\].
The above given expression is ${\log _5}\left( {\dfrac{{25}}{x}} \right)$.So first we will apply quotient rule which is given below:
\[{\log _b}\left( {\dfrac{M}{N}} \right) = {\log _b}M - {\log _b}N\]
Now this states that the log of quotients is the difference of the log of dividend and divisor. So, applying this on the expression,
\[
\Rightarrow \log \left( {\dfrac{{25}}{x}} \right) = {\log _5}\left( {25} \right) - {\log _5}x \\
\Rightarrow {\log _5}\left( {\dfrac{{25}}{x}} \right) = {\log _5}\left( {{5^2}} \right) - {\log _5}x \\ \]
Now by applying the power rule which is given below:
\[{\log _b}\left( {{M^p}} \right) = p{\log _b}\left( M \right)\]
Since we have the first term in power therefore will apply the other property.
\[
{\log _5}\left( {\dfrac{{25}}{x}} \right) = {\log _5}\left( {{5^2}} \right) - \log x \\
\Rightarrow{\log _5}\left( {\dfrac{{25}}{x}} \right) = 2{\log _5}\left( 5 \right) - \log x \\
\therefore{\log _5}\left( {\dfrac{{25}}{x}} \right) = (2 \times 1) - {\log _5}x = 2 - {\log _5}x \]
Therefore, we get the above solution after simplifying.
Note: An important thing to note is that these properties can have any values for M,N and b where \[M,N > 0\]and \[0 < b \ne 1\].The reason for this is the argument of the logarithm must be positive and the base of the logarithm must also be positive and not equal to 1.
Complete step by step solution:
Logarithms, like exponents, have many useful properties that can be used to reduce by simplifying logarithmic expressions and solve logarithmic equations. Logarithm is the exponent or power to which base must be raised to yield a given number. When expressed mathematically x is the logarithm of base n to the base b if \[{b^x} = n\] ,then we can write it as \[x = {\log _b}n\].
The above given expression is ${\log _5}\left( {\dfrac{{25}}{x}} \right)$.So first we will apply quotient rule which is given below:
\[{\log _b}\left( {\dfrac{M}{N}} \right) = {\log _b}M - {\log _b}N\]
Now this states that the log of quotients is the difference of the log of dividend and divisor. So, applying this on the expression,
\[
\Rightarrow \log \left( {\dfrac{{25}}{x}} \right) = {\log _5}\left( {25} \right) - {\log _5}x \\
\Rightarrow {\log _5}\left( {\dfrac{{25}}{x}} \right) = {\log _5}\left( {{5^2}} \right) - {\log _5}x \\ \]
Now by applying the power rule which is given below:
\[{\log _b}\left( {{M^p}} \right) = p{\log _b}\left( M \right)\]
Since we have the first term in power therefore will apply the other property.
\[
{\log _5}\left( {\dfrac{{25}}{x}} \right) = {\log _5}\left( {{5^2}} \right) - \log x \\
\Rightarrow{\log _5}\left( {\dfrac{{25}}{x}} \right) = 2{\log _5}\left( 5 \right) - \log x \\
\therefore{\log _5}\left( {\dfrac{{25}}{x}} \right) = (2 \times 1) - {\log _5}x = 2 - {\log _5}x \]
Therefore, we get the above solution after simplifying.
Note: An important thing to note is that these properties can have any values for M,N and b where \[M,N > 0\]and \[0 < b \ne 1\].The reason for this is the argument of the logarithm must be positive and the base of the logarithm must also be positive and not equal to 1.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE