
How do you write the logarithmic expression as the sum, difference or multiple of logarithms and simplify as much as possible for ${\log _5}\left( {\dfrac{{25}}{x}} \right)$?
Answer
490.8k+ views
Hint: The above question is based on the concept of logarithm. The main approach towards solving the question is by applying various logarithmic properties on the above given expression. Properties like quotient rule and power rule are applied to the expression and further it is simplified.
Complete step by step solution:
Logarithms, like exponents, have many useful properties that can be used to reduce by simplifying logarithmic expressions and solve logarithmic equations. Logarithm is the exponent or power to which base must be raised to yield a given number. When expressed mathematically x is the logarithm of base n to the base b if \[{b^x} = n\] ,then we can write it as \[x = {\log _b}n\].
The above given expression is ${\log _5}\left( {\dfrac{{25}}{x}} \right)$.So first we will apply quotient rule which is given below:
\[{\log _b}\left( {\dfrac{M}{N}} \right) = {\log _b}M - {\log _b}N\]
Now this states that the log of quotients is the difference of the log of dividend and divisor. So, applying this on the expression,
\[
\Rightarrow \log \left( {\dfrac{{25}}{x}} \right) = {\log _5}\left( {25} \right) - {\log _5}x \\
\Rightarrow {\log _5}\left( {\dfrac{{25}}{x}} \right) = {\log _5}\left( {{5^2}} \right) - {\log _5}x \\ \]
Now by applying the power rule which is given below:
\[{\log _b}\left( {{M^p}} \right) = p{\log _b}\left( M \right)\]
Since we have the first term in power therefore will apply the other property.
\[
{\log _5}\left( {\dfrac{{25}}{x}} \right) = {\log _5}\left( {{5^2}} \right) - \log x \\
\Rightarrow{\log _5}\left( {\dfrac{{25}}{x}} \right) = 2{\log _5}\left( 5 \right) - \log x \\
\therefore{\log _5}\left( {\dfrac{{25}}{x}} \right) = (2 \times 1) - {\log _5}x = 2 - {\log _5}x \]
Therefore, we get the above solution after simplifying.
Note: An important thing to note is that these properties can have any values for M,N and b where \[M,N > 0\]and \[0 < b \ne 1\].The reason for this is the argument of the logarithm must be positive and the base of the logarithm must also be positive and not equal to 1.
Complete step by step solution:
Logarithms, like exponents, have many useful properties that can be used to reduce by simplifying logarithmic expressions and solve logarithmic equations. Logarithm is the exponent or power to which base must be raised to yield a given number. When expressed mathematically x is the logarithm of base n to the base b if \[{b^x} = n\] ,then we can write it as \[x = {\log _b}n\].
The above given expression is ${\log _5}\left( {\dfrac{{25}}{x}} \right)$.So first we will apply quotient rule which is given below:
\[{\log _b}\left( {\dfrac{M}{N}} \right) = {\log _b}M - {\log _b}N\]
Now this states that the log of quotients is the difference of the log of dividend and divisor. So, applying this on the expression,
\[
\Rightarrow \log \left( {\dfrac{{25}}{x}} \right) = {\log _5}\left( {25} \right) - {\log _5}x \\
\Rightarrow {\log _5}\left( {\dfrac{{25}}{x}} \right) = {\log _5}\left( {{5^2}} \right) - {\log _5}x \\ \]
Now by applying the power rule which is given below:
\[{\log _b}\left( {{M^p}} \right) = p{\log _b}\left( M \right)\]
Since we have the first term in power therefore will apply the other property.
\[
{\log _5}\left( {\dfrac{{25}}{x}} \right) = {\log _5}\left( {{5^2}} \right) - \log x \\
\Rightarrow{\log _5}\left( {\dfrac{{25}}{x}} \right) = 2{\log _5}\left( 5 \right) - \log x \\
\therefore{\log _5}\left( {\dfrac{{25}}{x}} \right) = (2 \times 1) - {\log _5}x = 2 - {\log _5}x \]
Therefore, we get the above solution after simplifying.
Note: An important thing to note is that these properties can have any values for M,N and b where \[M,N > 0\]and \[0 < b \ne 1\].The reason for this is the argument of the logarithm must be positive and the base of the logarithm must also be positive and not equal to 1.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
