Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Write the formula for the sum of first n positive integers.

seo-qna
Last updated date: 23rd May 2024
Total views: 436.5k
Views today: 4.36k
Answer
VerifiedVerified
436.5k+ views
Hint:- Check whether n numbers form an A.P or not and apply $ \Rightarrow {S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$ .

For finding the sum of first n positive integers.
As we know that the first positive integer is 1.
And the second positive integer will be 2.
And this sequence goes on till the last number is n.
So, first n positive numbers will be \[1,2,3,4......n - 1,n\].
As we see that these n numbers written above forms an A.P. With,
$ \Rightarrow $First number, $a = 1$.
$ \Rightarrow $Common difference,${\text{ }}d = 1$.
$ \Rightarrow $And total number of terms $ = n$.
As, we know that the sum of n terms of an A.P is given as ${S_n}$. Where,
$ \Rightarrow {S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$ (1)
So, putting the values of a, d and n in equation 1. We get,
$ \Rightarrow {S_n} = \dfrac{n}{2}\left( {2 + \left( {n - 1} \right)} \right) = {\text{ }}\dfrac{{n\left( {n + 1} \right)}}{2}{\text{ }}$
Hence, sum of first n positive integers will be $\dfrac{{n\left( {n + 1} \right)}}{2}{\text{ }}$

Note:- Whenever we came up with this type of problem where we are asked to find the
Sum or product of some numbers then, first we had to check whether these number have any
relation with each other, because in most of the cases they form A.P or G.P. Then we can easily
find the sum or product of these numbers using A.P or G.P formula.