Answer
Verified
423.9k+ views
Hint: In the above problem, we are asked to write the inequalities $4 > x\text{ or }3 > x$ in interval notation. We know that if we have given $2 > x$ then the interval notation for this inequality is $x\in \left( -\infty ,2 \right)$ so using this notation we can write the interval notation for $4 > x\text{ or }3 > x$. Also, there is a word “or” in this inequality which means we have to take the union of these two inequalities.
Complete step-by-step solution:
The inequalities given in the above problem is as follows:
$4 > x\text{ or }3 > x$
Now, we are going to write the interval notation for $4 > x$ which is equal to:
$x\in \left( -\infty ,4 \right)$
And then, we are going to write the interval notation for $3 > x$ which is equal to:
$x\in \left( -\infty ,3 \right)$
In the above problem, we have given $4 > x\text{ or }3 > x$, the “or” sign means the union of these two inequalities. So, applying the union in the interval notation for $4 > x\text{ or }3 > x$ we get,
$x\in \left( -\infty ,4 \right)\bigcup x\in \left( -\infty ,3 \right)$
Now, finding the union of the above two intervals by plotting these intervals on the number line.
The union of the two intervals is equal to:
$x\in \left( -\infty ,4 \right)$
Hence, the interval notation for the given inequality is $x\in \left( -\infty ,4 \right)$.
Note: In the above problem, if instead of union, intersection will be given and it will look like:
$4 > x\text{ and }3 > x$
“And” is the common region between the two intervals so the interval notation for the above is as follows:
$x\in \left( -\infty ,4 \right)\bigcap x\in \left( -\infty ,3 \right)$
Now, plotting these two intervals on the number line we get,
As you can see that the common region is $x<3$ and the interval notation for this inequality we get,
$x\in \left( -\infty ,3 \right)$
The difference between union and the intersection is that in union we will take the largest interval just like we have taken in the above solution as $x\in \left( -\infty ,4 \right)$ and the intersection only involve the common region between the two intervals or you can say the smallest interval i.e. $x\in \left( -\infty ,3 \right)$.
Complete step-by-step solution:
The inequalities given in the above problem is as follows:
$4 > x\text{ or }3 > x$
Now, we are going to write the interval notation for $4 > x$ which is equal to:
$x\in \left( -\infty ,4 \right)$
And then, we are going to write the interval notation for $3 > x$ which is equal to:
$x\in \left( -\infty ,3 \right)$
In the above problem, we have given $4 > x\text{ or }3 > x$, the “or” sign means the union of these two inequalities. So, applying the union in the interval notation for $4 > x\text{ or }3 > x$ we get,
$x\in \left( -\infty ,4 \right)\bigcup x\in \left( -\infty ,3 \right)$
Now, finding the union of the above two intervals by plotting these intervals on the number line.
The union of the two intervals is equal to:
$x\in \left( -\infty ,4 \right)$
Hence, the interval notation for the given inequality is $x\in \left( -\infty ,4 \right)$.
Note: In the above problem, if instead of union, intersection will be given and it will look like:
$4 > x\text{ and }3 > x$
“And” is the common region between the two intervals so the interval notation for the above is as follows:
$x\in \left( -\infty ,4 \right)\bigcap x\in \left( -\infty ,3 \right)$
Now, plotting these two intervals on the number line we get,
As you can see that the common region is $x<3$ and the interval notation for this inequality we get,
$x\in \left( -\infty ,3 \right)$
The difference between union and the intersection is that in union we will take the largest interval just like we have taken in the above solution as $x\in \left( -\infty ,4 \right)$ and the intersection only involve the common region between the two intervals or you can say the smallest interval i.e. $x\in \left( -\infty ,3 \right)$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE