
How do you write the first six terms of an arithmetic sequence if the first term ${a_1}$, is $ - 4$, and the common difference, $d$, is $10$?
Answer
553.2k+ views
Hint: Here, we are given the first term and the common difference of an arithmetic sequence. Therefore, we need to use the formula for finding the $nth$term of the arithmetic sequence. By this formula and the given information, we can obtain a linear equation with variable $n$in which we can obtain the terms by putting the value of $n$.
Formula used:${a_n} = {a_1} + \left( {n - 1} \right)d$, where, ${a_n}$is the $nth$ term of the arithmetic sequence, ${a_1}$ is the first term of the arithmetic sequence and $d$is the common difference between two consecutive terms in the arithmetic sequence
Complete step-by-step solution:
We know that for the arithmetic sequence,
${a_n} = {a_1} + \left( {n - 1} \right)d$
We are given that the first term ${a_1} = - 4$and the common difference $d = 10$.
$
\Rightarrow {a_n} = - 4 + \left( {n - 1} \right)10 \\
\Rightarrow {a_n} = - 4 + 10n - 10 \\
\Rightarrow {a_n} = 10n - 14 \\
$
We are asked to find the first six terms of the arithmetic sequence.
The first term is already given to us which is ${a_1} = - 4$.
We can find the second term by putting the value of $n = 2$ in the equation ${a_n} = 10n - 14$.
$ \Rightarrow {a_2} = 10\left( 2 \right) - 14 = 20 - 14 = 6$
We can find the second term by putting the value of $n = 3$ in the equation ${a_n} = 10n - 14$.
$ \Rightarrow {a_3} = 10\left( 3 \right) - 14 = 30 - 14 = 16$
We can find the second term by putting the value of $n = 4$ in the equation ${a_n} = 10n - 14$.
$ \Rightarrow {a_4} = 10\left( 4 \right) - 14 = 40 - 14 = 26$
We can find the second term by putting the value of $n = 5$ in the equation ${a_n} = 10n - 14$.
$ \Rightarrow {a_5} = 10\left( 5 \right) - 14 = 50 - 14 = 36$
We can find the second term by putting the value of $n = 6$ in the equation ${a_n} = 10n - 14$.
$ \Rightarrow {a_6} = 10\left( 6 \right) - 14 = 60 - 14 = 46$
Thus, the first six terms of the arithmetic sequence are $ - 4,6,16,26,36,46$.
Note: In this type of question where the first term and the common difference of an arithmetic sequence is given, we can also obtain the first few terms by simply adding the common difference to the consecutive terms. For example, here the first term is given as $ - 4$. When we simply add the common difference $10$, we get our second term $6$. Thus, by repeating this four more times, we get the first six terms of the arithmetic sequence.
Formula used:${a_n} = {a_1} + \left( {n - 1} \right)d$, where, ${a_n}$is the $nth$ term of the arithmetic sequence, ${a_1}$ is the first term of the arithmetic sequence and $d$is the common difference between two consecutive terms in the arithmetic sequence
Complete step-by-step solution:
We know that for the arithmetic sequence,
${a_n} = {a_1} + \left( {n - 1} \right)d$
We are given that the first term ${a_1} = - 4$and the common difference $d = 10$.
$
\Rightarrow {a_n} = - 4 + \left( {n - 1} \right)10 \\
\Rightarrow {a_n} = - 4 + 10n - 10 \\
\Rightarrow {a_n} = 10n - 14 \\
$
We are asked to find the first six terms of the arithmetic sequence.
The first term is already given to us which is ${a_1} = - 4$.
We can find the second term by putting the value of $n = 2$ in the equation ${a_n} = 10n - 14$.
$ \Rightarrow {a_2} = 10\left( 2 \right) - 14 = 20 - 14 = 6$
We can find the second term by putting the value of $n = 3$ in the equation ${a_n} = 10n - 14$.
$ \Rightarrow {a_3} = 10\left( 3 \right) - 14 = 30 - 14 = 16$
We can find the second term by putting the value of $n = 4$ in the equation ${a_n} = 10n - 14$.
$ \Rightarrow {a_4} = 10\left( 4 \right) - 14 = 40 - 14 = 26$
We can find the second term by putting the value of $n = 5$ in the equation ${a_n} = 10n - 14$.
$ \Rightarrow {a_5} = 10\left( 5 \right) - 14 = 50 - 14 = 36$
We can find the second term by putting the value of $n = 6$ in the equation ${a_n} = 10n - 14$.
$ \Rightarrow {a_6} = 10\left( 6 \right) - 14 = 60 - 14 = 46$
Thus, the first six terms of the arithmetic sequence are $ - 4,6,16,26,36,46$.
Note: In this type of question where the first term and the common difference of an arithmetic sequence is given, we can also obtain the first few terms by simply adding the common difference to the consecutive terms. For example, here the first term is given as $ - 4$. When we simply add the common difference $10$, we get our second term $6$. Thus, by repeating this four more times, we get the first six terms of the arithmetic sequence.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

