
Write down and simplify:
The ${{\text{8}}^{th}}$term of ${\left( {1 + 2x} \right)^{ - \dfrac{1}{2}}}$
Answer
607.2k+ views
Hint:General term \[\left( {{\text{i}}{\text{.e}}{\text{.}}{{\left( {r + 1} \right)}^{th}}{\text{ term}}} \right)\]in the expansion of \[{\left( {1 + x} \right)^n}\]=\[{{\text{T}}_{r + 1}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)............\left( {n - r + 1} \right)}}{{r!}}{x^r}\]
Given equation is:
${\left( {1 + 2x} \right)^{ - \dfrac{1}{2}}}$
Now as we know the general term \[\left( {{\text{i}}{\text{.e}}{\text{.}}{{\left( {r + 1} \right)}^{th}}{\text{ term}}} \right)\] in the expansion of \[{\left( {1 + x} \right)^n}\] is given as
\[{{\text{T}}_{r + 1}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)............\left( {n - r + 1} \right)}}{{r!}}{x^r}\]
\[\therefore {8^{th}}\]Term is\[{{\text{T}}_8}\], for \[{\text{r = 7}}\]
\[
\therefore {{\text{T}}_8} = \left[ {\dfrac{{\dfrac{{ - 1}}{2}\left( {\dfrac{{ - 1}}{2} - 1} \right)\left( {\dfrac{{ - 1}}{2} - 2} \right)\left( {\dfrac{{ - 1}}{2} - 3} \right)\left( {\dfrac{{ - 1}}{2} - 4} \right)\left( {\dfrac{{ - 1}}{2} - 5} \right)\left( {\dfrac{{ - 1}}{2} - 6} \right)}}{{7!}}{{\left( {2x} \right)}^7}} \right] \\
\Rightarrow \left[ {\dfrac{{\dfrac{{ - 1}}{2}\left( {\dfrac{{ - 3}}{2}} \right)\left( {\dfrac{{ - 5}}{2}} \right)\left( {\dfrac{{ - 7}}{2}} \right)\left( {\dfrac{{ - 9}}{2}} \right)\left( {\dfrac{{ - 11}}{2}} \right)\left( {\dfrac{{ - 13}}{2}} \right)}}{{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( {2x} \right)}^7}} \right] \\
\Rightarrow \left[ {\dfrac{{{{\left( { - 1} \right)}^7}.1.3.5.7.9.11.13}}{{{2^7}.7.6.5.4.3.2.1}}{2^7}.{x^7}} \right] \\
\Rightarrow - \left[ {\dfrac{{9.11.13}}{{6.4.2.1}}} \right]\left( {{x^7}} \right) = - \dfrac{{1287}}{{48}}{x^7} = - \dfrac{{429}}{{16}}{x^7} \\
\]
So, this is the required \[{8^{th}}\]term.
Note: -In such types of questions the key concept is that we have to remember the general term \[\left( {{\text{i}}{\text{.e}}{\text{.}}{{\left( {r + 1} \right)}^{th}}{\text{ term}}} \right)\] which is stated above in the expansion of \[{\left( {1 + x} \right)^n}\], then calculate the required term using this formula and simplify then we will get the required answer.
Given equation is:
${\left( {1 + 2x} \right)^{ - \dfrac{1}{2}}}$
Now as we know the general term \[\left( {{\text{i}}{\text{.e}}{\text{.}}{{\left( {r + 1} \right)}^{th}}{\text{ term}}} \right)\] in the expansion of \[{\left( {1 + x} \right)^n}\] is given as
\[{{\text{T}}_{r + 1}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)............\left( {n - r + 1} \right)}}{{r!}}{x^r}\]
\[\therefore {8^{th}}\]Term is\[{{\text{T}}_8}\], for \[{\text{r = 7}}\]
\[
\therefore {{\text{T}}_8} = \left[ {\dfrac{{\dfrac{{ - 1}}{2}\left( {\dfrac{{ - 1}}{2} - 1} \right)\left( {\dfrac{{ - 1}}{2} - 2} \right)\left( {\dfrac{{ - 1}}{2} - 3} \right)\left( {\dfrac{{ - 1}}{2} - 4} \right)\left( {\dfrac{{ - 1}}{2} - 5} \right)\left( {\dfrac{{ - 1}}{2} - 6} \right)}}{{7!}}{{\left( {2x} \right)}^7}} \right] \\
\Rightarrow \left[ {\dfrac{{\dfrac{{ - 1}}{2}\left( {\dfrac{{ - 3}}{2}} \right)\left( {\dfrac{{ - 5}}{2}} \right)\left( {\dfrac{{ - 7}}{2}} \right)\left( {\dfrac{{ - 9}}{2}} \right)\left( {\dfrac{{ - 11}}{2}} \right)\left( {\dfrac{{ - 13}}{2}} \right)}}{{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( {2x} \right)}^7}} \right] \\
\Rightarrow \left[ {\dfrac{{{{\left( { - 1} \right)}^7}.1.3.5.7.9.11.13}}{{{2^7}.7.6.5.4.3.2.1}}{2^7}.{x^7}} \right] \\
\Rightarrow - \left[ {\dfrac{{9.11.13}}{{6.4.2.1}}} \right]\left( {{x^7}} \right) = - \dfrac{{1287}}{{48}}{x^7} = - \dfrac{{429}}{{16}}{x^7} \\
\]
So, this is the required \[{8^{th}}\]term.
Note: -In such types of questions the key concept is that we have to remember the general term \[\left( {{\text{i}}{\text{.e}}{\text{.}}{{\left( {r + 1} \right)}^{th}}{\text{ term}}} \right)\] which is stated above in the expansion of \[{\left( {1 + x} \right)^n}\], then calculate the required term using this formula and simplify then we will get the required answer.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

