Write down and simplify
The ${\text{1}}{{\text{4}}^{th}}$term of ${\left( {{2^{10}} - {2^7}x} \right)^{\dfrac{{13}}{2}}}$
Last updated date: 31st Mar 2023
•
Total views: 309.9k
•
Views today: 3.86k
Answer
309.9k+ views
Hint: Use general term \[\left( {{\text{i}}{\text{.e}}{\text{.}}{{\left( {r + 1} \right)}^{th}}{\text{ term}}} \right)\] in the expansion of \[{\left( {1 + x} \right)^n}\]=
\[{{\text{T}}_{r + 1}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)............\left( {n - r + 1} \right)}}{{r!}}{x^r}\]
Given equation is:
${\left( {{2^{10}} - {2^7}x} \right)^{\dfrac{{13}}{2}}}$
Take ${2^{10}}$as common
$ \Rightarrow {\left( {{2^{10}} - {2^7}x} \right)^{\dfrac{{13}}{2}}} = {\left( {{2^{10}}} \right)^{\dfrac{{13}}{2}}}{\left( {1 - \dfrac{{{2^7}}}{{{2^{10}}}}x} \right)^{\dfrac{{13}}{2}}} = {2^{65}}{\left( {1 - \dfrac{x}{8}} \right)^{\dfrac{{13}}{2}}}$
Now as we know the general term \[\left( {{\text{i}}{\text{.e}}{\text{.}}{{\left( {r + 1} \right)}^{th}}{\text{ term}}} \right)\] in the expansion of \[{\left( {1 + x} \right)^n}\]is given as
${{\text{T}}_{r + 1}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)............\left( {n - r + 1} \right)}}{{r!}}{x^r}$
$\therefore {14^{th}}$Term is ${T_{14}}$, for $r = 13$
$\therefore {{\text{T}}_{14}} = \dfrac{{{2^{65}}}}{{13!}}\left\{
\dfrac{{13}}{2}\left( {\dfrac{{13}}{2} - 1} \right)\left( {\dfrac{{13}}{2} - 2} \right)\left( {\dfrac{{13}}{2} - 3} \right)\left( {\dfrac{{13}}{2} - 4} \right)\left( {\dfrac{{13}}{2} - 5} \right)\left( {\dfrac{{13}}{2} - 6} \right) \\
{\text{ }} \times \left( {\dfrac{{13}}{2} - 7} \right)\left( {\dfrac{{13}}{2} - 8} \right)\left( {\dfrac{{13}}{2} - 9} \right)\left( {\dfrac{{13}}{2} - 10} \right)\left( {\dfrac{{13}}{2} - 11} \right)\left( {\dfrac{{13}}{2} - 12} \right){\left( { - \dfrac{x}{8}} \right)^{13}} \\
\right\}$
$\therefore {{\text{T}}_{14}} \Rightarrow {2^{65}}\left[ {\dfrac{{\dfrac{{13}}{2}\left( {\dfrac{{11}}{2}} \right)\left( {\dfrac{9}{2}} \right)\left( {\dfrac{7}{2}} \right)\left( {\dfrac{5}{2}} \right)\left( {\dfrac{3}{2}} \right)\left( {\dfrac{1}{2}} \right)\left( { - \dfrac{1}{2}} \right)\left( { - \dfrac{3}{2}} \right)\left( { - \dfrac{5}{2}} \right)\left( { - \dfrac{7}{2}} \right)\left( { - \dfrac{9}{2}} \right)\left( { - \dfrac{{11}}{2}} \right)}}{{13 \times 12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( { - \dfrac{x}{8}} \right)}^{13}}} \right]$
$ \Rightarrow {2^{65}}\left[ {\dfrac{{13.11.9.7.5.3.1.1.3.5.7.9.11}}{{{2^{13}}{{.13.12.11.10.9.8.7.6.5.4.3.2.1.8}^{13}}}}\left( { - {x^{13}}} \right)} \right]$
$ \Rightarrow {2^{13}}\left[ {\dfrac{{3.5.7.9.11}}{{12.10.8.6.4.2}}} \right]\left( { - {x^{13}}} \right) = - 1848{x^{13}}$
So, this is the required value of the ${14^{th}}$ term.
Note: - In such types of questions the key concept is that we have to remember the general term \[\left( {{\text{i}}{\text{.e}}{\text{.}}{{\left( {r + 1} \right)}^{th}}{\text{ term}}} \right)\] which is stated above in the expansion of \[{\left( {1 + x} \right)^n}\], then calculate the required term using this formula and simplify then we will get the required answer.
\[{{\text{T}}_{r + 1}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)............\left( {n - r + 1} \right)}}{{r!}}{x^r}\]
Given equation is:
${\left( {{2^{10}} - {2^7}x} \right)^{\dfrac{{13}}{2}}}$
Take ${2^{10}}$as common
$ \Rightarrow {\left( {{2^{10}} - {2^7}x} \right)^{\dfrac{{13}}{2}}} = {\left( {{2^{10}}} \right)^{\dfrac{{13}}{2}}}{\left( {1 - \dfrac{{{2^7}}}{{{2^{10}}}}x} \right)^{\dfrac{{13}}{2}}} = {2^{65}}{\left( {1 - \dfrac{x}{8}} \right)^{\dfrac{{13}}{2}}}$
Now as we know the general term \[\left( {{\text{i}}{\text{.e}}{\text{.}}{{\left( {r + 1} \right)}^{th}}{\text{ term}}} \right)\] in the expansion of \[{\left( {1 + x} \right)^n}\]is given as
${{\text{T}}_{r + 1}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)............\left( {n - r + 1} \right)}}{{r!}}{x^r}$
$\therefore {14^{th}}$Term is ${T_{14}}$, for $r = 13$
$\therefore {{\text{T}}_{14}} = \dfrac{{{2^{65}}}}{{13!}}\left\{
\dfrac{{13}}{2}\left( {\dfrac{{13}}{2} - 1} \right)\left( {\dfrac{{13}}{2} - 2} \right)\left( {\dfrac{{13}}{2} - 3} \right)\left( {\dfrac{{13}}{2} - 4} \right)\left( {\dfrac{{13}}{2} - 5} \right)\left( {\dfrac{{13}}{2} - 6} \right) \\
{\text{ }} \times \left( {\dfrac{{13}}{2} - 7} \right)\left( {\dfrac{{13}}{2} - 8} \right)\left( {\dfrac{{13}}{2} - 9} \right)\left( {\dfrac{{13}}{2} - 10} \right)\left( {\dfrac{{13}}{2} - 11} \right)\left( {\dfrac{{13}}{2} - 12} \right){\left( { - \dfrac{x}{8}} \right)^{13}} \\
\right\}$
$\therefore {{\text{T}}_{14}} \Rightarrow {2^{65}}\left[ {\dfrac{{\dfrac{{13}}{2}\left( {\dfrac{{11}}{2}} \right)\left( {\dfrac{9}{2}} \right)\left( {\dfrac{7}{2}} \right)\left( {\dfrac{5}{2}} \right)\left( {\dfrac{3}{2}} \right)\left( {\dfrac{1}{2}} \right)\left( { - \dfrac{1}{2}} \right)\left( { - \dfrac{3}{2}} \right)\left( { - \dfrac{5}{2}} \right)\left( { - \dfrac{7}{2}} \right)\left( { - \dfrac{9}{2}} \right)\left( { - \dfrac{{11}}{2}} \right)}}{{13 \times 12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( { - \dfrac{x}{8}} \right)}^{13}}} \right]$
$ \Rightarrow {2^{65}}\left[ {\dfrac{{13.11.9.7.5.3.1.1.3.5.7.9.11}}{{{2^{13}}{{.13.12.11.10.9.8.7.6.5.4.3.2.1.8}^{13}}}}\left( { - {x^{13}}} \right)} \right]$
$ \Rightarrow {2^{13}}\left[ {\dfrac{{3.5.7.9.11}}{{12.10.8.6.4.2}}} \right]\left( { - {x^{13}}} \right) = - 1848{x^{13}}$
So, this is the required value of the ${14^{th}}$ term.
Note: - In such types of questions the key concept is that we have to remember the general term \[\left( {{\text{i}}{\text{.e}}{\text{.}}{{\left( {r + 1} \right)}^{th}}{\text{ term}}} \right)\] which is stated above in the expansion of \[{\left( {1 + x} \right)^n}\], then calculate the required term using this formula and simplify then we will get the required answer.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
