Write down and simplify
The ${\text{1}}{{\text{4}}^{th}}$term of ${\left( {{2^{10}} - {2^7}x} \right)^{\dfrac{{13}}{2}}}$
Answer
383.4k+ views
Hint: Use general term \[\left( {{\text{i}}{\text{.e}}{\text{.}}{{\left( {r + 1} \right)}^{th}}{\text{ term}}} \right)\] in the expansion of \[{\left( {1 + x} \right)^n}\]=
\[{{\text{T}}_{r + 1}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)............\left( {n - r + 1} \right)}}{{r!}}{x^r}\]
Given equation is:
${\left( {{2^{10}} - {2^7}x} \right)^{\dfrac{{13}}{2}}}$
Take ${2^{10}}$as common
$ \Rightarrow {\left( {{2^{10}} - {2^7}x} \right)^{\dfrac{{13}}{2}}} = {\left( {{2^{10}}} \right)^{\dfrac{{13}}{2}}}{\left( {1 - \dfrac{{{2^7}}}{{{2^{10}}}}x} \right)^{\dfrac{{13}}{2}}} = {2^{65}}{\left( {1 - \dfrac{x}{8}} \right)^{\dfrac{{13}}{2}}}$
Now as we know the general term \[\left( {{\text{i}}{\text{.e}}{\text{.}}{{\left( {r + 1} \right)}^{th}}{\text{ term}}} \right)\] in the expansion of \[{\left( {1 + x} \right)^n}\]is given as
${{\text{T}}_{r + 1}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)............\left( {n - r + 1} \right)}}{{r!}}{x^r}$
$\therefore {14^{th}}$Term is ${T_{14}}$, for $r = 13$
$\therefore {{\text{T}}_{14}} = \dfrac{{{2^{65}}}}{{13!}}\left\{
\dfrac{{13}}{2}\left( {\dfrac{{13}}{2} - 1} \right)\left( {\dfrac{{13}}{2} - 2} \right)\left( {\dfrac{{13}}{2} - 3} \right)\left( {\dfrac{{13}}{2} - 4} \right)\left( {\dfrac{{13}}{2} - 5} \right)\left( {\dfrac{{13}}{2} - 6} \right) \\
{\text{ }} \times \left( {\dfrac{{13}}{2} - 7} \right)\left( {\dfrac{{13}}{2} - 8} \right)\left( {\dfrac{{13}}{2} - 9} \right)\left( {\dfrac{{13}}{2} - 10} \right)\left( {\dfrac{{13}}{2} - 11} \right)\left( {\dfrac{{13}}{2} - 12} \right){\left( { - \dfrac{x}{8}} \right)^{13}} \\
\right\}$
$\therefore {{\text{T}}_{14}} \Rightarrow {2^{65}}\left[ {\dfrac{{\dfrac{{13}}{2}\left( {\dfrac{{11}}{2}} \right)\left( {\dfrac{9}{2}} \right)\left( {\dfrac{7}{2}} \right)\left( {\dfrac{5}{2}} \right)\left( {\dfrac{3}{2}} \right)\left( {\dfrac{1}{2}} \right)\left( { - \dfrac{1}{2}} \right)\left( { - \dfrac{3}{2}} \right)\left( { - \dfrac{5}{2}} \right)\left( { - \dfrac{7}{2}} \right)\left( { - \dfrac{9}{2}} \right)\left( { - \dfrac{{11}}{2}} \right)}}{{13 \times 12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( { - \dfrac{x}{8}} \right)}^{13}}} \right]$
$ \Rightarrow {2^{65}}\left[ {\dfrac{{13.11.9.7.5.3.1.1.3.5.7.9.11}}{{{2^{13}}{{.13.12.11.10.9.8.7.6.5.4.3.2.1.8}^{13}}}}\left( { - {x^{13}}} \right)} \right]$
$ \Rightarrow {2^{13}}\left[ {\dfrac{{3.5.7.9.11}}{{12.10.8.6.4.2}}} \right]\left( { - {x^{13}}} \right) = - 1848{x^{13}}$
So, this is the required value of the ${14^{th}}$ term.
Note: - In such types of questions the key concept is that we have to remember the general term \[\left( {{\text{i}}{\text{.e}}{\text{.}}{{\left( {r + 1} \right)}^{th}}{\text{ term}}} \right)\] which is stated above in the expansion of \[{\left( {1 + x} \right)^n}\], then calculate the required term using this formula and simplify then we will get the required answer.
\[{{\text{T}}_{r + 1}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)............\left( {n - r + 1} \right)}}{{r!}}{x^r}\]
Given equation is:
${\left( {{2^{10}} - {2^7}x} \right)^{\dfrac{{13}}{2}}}$
Take ${2^{10}}$as common
$ \Rightarrow {\left( {{2^{10}} - {2^7}x} \right)^{\dfrac{{13}}{2}}} = {\left( {{2^{10}}} \right)^{\dfrac{{13}}{2}}}{\left( {1 - \dfrac{{{2^7}}}{{{2^{10}}}}x} \right)^{\dfrac{{13}}{2}}} = {2^{65}}{\left( {1 - \dfrac{x}{8}} \right)^{\dfrac{{13}}{2}}}$
Now as we know the general term \[\left( {{\text{i}}{\text{.e}}{\text{.}}{{\left( {r + 1} \right)}^{th}}{\text{ term}}} \right)\] in the expansion of \[{\left( {1 + x} \right)^n}\]is given as
${{\text{T}}_{r + 1}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)............\left( {n - r + 1} \right)}}{{r!}}{x^r}$
$\therefore {14^{th}}$Term is ${T_{14}}$, for $r = 13$
$\therefore {{\text{T}}_{14}} = \dfrac{{{2^{65}}}}{{13!}}\left\{
\dfrac{{13}}{2}\left( {\dfrac{{13}}{2} - 1} \right)\left( {\dfrac{{13}}{2} - 2} \right)\left( {\dfrac{{13}}{2} - 3} \right)\left( {\dfrac{{13}}{2} - 4} \right)\left( {\dfrac{{13}}{2} - 5} \right)\left( {\dfrac{{13}}{2} - 6} \right) \\
{\text{ }} \times \left( {\dfrac{{13}}{2} - 7} \right)\left( {\dfrac{{13}}{2} - 8} \right)\left( {\dfrac{{13}}{2} - 9} \right)\left( {\dfrac{{13}}{2} - 10} \right)\left( {\dfrac{{13}}{2} - 11} \right)\left( {\dfrac{{13}}{2} - 12} \right){\left( { - \dfrac{x}{8}} \right)^{13}} \\
\right\}$
$\therefore {{\text{T}}_{14}} \Rightarrow {2^{65}}\left[ {\dfrac{{\dfrac{{13}}{2}\left( {\dfrac{{11}}{2}} \right)\left( {\dfrac{9}{2}} \right)\left( {\dfrac{7}{2}} \right)\left( {\dfrac{5}{2}} \right)\left( {\dfrac{3}{2}} \right)\left( {\dfrac{1}{2}} \right)\left( { - \dfrac{1}{2}} \right)\left( { - \dfrac{3}{2}} \right)\left( { - \dfrac{5}{2}} \right)\left( { - \dfrac{7}{2}} \right)\left( { - \dfrac{9}{2}} \right)\left( { - \dfrac{{11}}{2}} \right)}}{{13 \times 12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( { - \dfrac{x}{8}} \right)}^{13}}} \right]$
$ \Rightarrow {2^{65}}\left[ {\dfrac{{13.11.9.7.5.3.1.1.3.5.7.9.11}}{{{2^{13}}{{.13.12.11.10.9.8.7.6.5.4.3.2.1.8}^{13}}}}\left( { - {x^{13}}} \right)} \right]$
$ \Rightarrow {2^{13}}\left[ {\dfrac{{3.5.7.9.11}}{{12.10.8.6.4.2}}} \right]\left( { - {x^{13}}} \right) = - 1848{x^{13}}$
So, this is the required value of the ${14^{th}}$ term.
Note: - In such types of questions the key concept is that we have to remember the general term \[\left( {{\text{i}}{\text{.e}}{\text{.}}{{\left( {r + 1} \right)}^{th}}{\text{ term}}} \right)\] which is stated above in the expansion of \[{\left( {1 + x} \right)^n}\], then calculate the required term using this formula and simplify then we will get the required answer.
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Which place is known as the tea garden of India class 8 social science CBSE

What is pollution? How many types of pollution? Define it

Write a letter to the principal requesting him to grant class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE
