
How do you write an equation of the line that passes through the points $\left( 4,3 \right)$ and $\left( -6,3 \right)$
Answer
539.1k+ views
Hint: The equation of line is $y=mx+b$.
This is equation of a line in which is called as slope intercept form where $m$ is the slope and $b$ is the $y$-intercept for finding equations of line first we have to find $m$ slope and then use the slope to find the $y$-intercept. Then you can find the equation of line for finding slope use.
$m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ this formula. Then put the values in the equation. You will get the answer.
Complete step by step solution:
To point given $\left( 4,3 \right)$ and $\left( -6,3 \right)$
The equation of line is $y=mx+b$ where $m$ is the slope and $b$ is the $y$-intercept for finding equations of line first we have to find $m$ slope and then use the slope to find the $y$-intercept. Then you can find the equation of line for finding slope.
The formula for slope is $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$
$\left( {{x}_{1}}{{y}_{1}} \right)=\left( 4,3 \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)=\left( -6,3 \right)$
$m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{-3-3}{-6-4}=\dfrac{-6}{-10}=\dfrac{3}{5}$
$m=\dfrac{3}{5}$
So, the slope of the line passing through the point $\left( 4,3 \right)$ and $\left( -6,-3 \right)$ is $3.$
Now we will use the slope to find the $y$intercept we know the slope of the line is $\dfrac{3}{5}$ we can put the value of slope $m$ in the equation of line in slope intercept from be,
$y=mx+b$
$\Rightarrow m=\dfrac{3}{5}$
$\Rightarrow y=\dfrac{3}{5}x+b$
Next choose one of the two points to put plug in for values of $x,y.$ It does not matter which one of the two points you should get the same answer in either case.
We will take $\left( x,y \right)$ $\left( 4:3 \right)$
Put this value in this equation.
$y=\dfrac{3}{5}x+b$
$\Rightarrow 3=\dfrac{3}{5}.4+b$
$\Rightarrow 3=\dfrac{12}{5}+b$
$\Rightarrow b=3-\dfrac{12}{5}$
$b=\dfrac{3}{5}$
Now, we have slope $m=\dfrac{3}{5}$ and the $y$-intercept $-b=\dfrac{3}{5}$
Put this value in the equation of the line in slope intercept form is
$y=\dfrac{3}{5}x+\dfrac{3}{5}$
Additional Information:
Slope intercept equation of vertical and horizontal lines. The equation of vertical lines is $x=b$ Since a vertical goes straight point on a vertical line is the same. Therefore whatever the $x$ value is also the value of $b.$
For instance the red line in the picture below is graph of the $x=1$
The equation of a horizontal line is $0$ is the general formula for the standard equation $y=mx+b$ becomes ${{y}_{0}}x+b$ $y=b$
Also since the line horizontal every point on that line has the same $y$ value. The $y$ value is therefore also the $y$ intercept for instance the red line.
Note: While solving this type of problem also slope intercept it is easy to solve.
Use the correct formula for students making mistakes on slope formulas.
It is $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ students write $\dfrac{{{x}_{2}}-{{x}_{1}}}{{{y}_{2}}-{{y}_{1}}}$
Sometimes so write carefully.
This is equation of a line in which is called as slope intercept form where $m$ is the slope and $b$ is the $y$-intercept for finding equations of line first we have to find $m$ slope and then use the slope to find the $y$-intercept. Then you can find the equation of line for finding slope use.
$m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ this formula. Then put the values in the equation. You will get the answer.
Complete step by step solution:
To point given $\left( 4,3 \right)$ and $\left( -6,3 \right)$
The equation of line is $y=mx+b$ where $m$ is the slope and $b$ is the $y$-intercept for finding equations of line first we have to find $m$ slope and then use the slope to find the $y$-intercept. Then you can find the equation of line for finding slope.
The formula for slope is $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$
$\left( {{x}_{1}}{{y}_{1}} \right)=\left( 4,3 \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)=\left( -6,3 \right)$
$m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{-3-3}{-6-4}=\dfrac{-6}{-10}=\dfrac{3}{5}$
$m=\dfrac{3}{5}$
So, the slope of the line passing through the point $\left( 4,3 \right)$ and $\left( -6,-3 \right)$ is $3.$
Now we will use the slope to find the $y$intercept we know the slope of the line is $\dfrac{3}{5}$ we can put the value of slope $m$ in the equation of line in slope intercept from be,
$y=mx+b$
$\Rightarrow m=\dfrac{3}{5}$
$\Rightarrow y=\dfrac{3}{5}x+b$
Next choose one of the two points to put plug in for values of $x,y.$ It does not matter which one of the two points you should get the same answer in either case.
We will take $\left( x,y \right)$ $\left( 4:3 \right)$
Put this value in this equation.
$y=\dfrac{3}{5}x+b$
$\Rightarrow 3=\dfrac{3}{5}.4+b$
$\Rightarrow 3=\dfrac{12}{5}+b$
$\Rightarrow b=3-\dfrac{12}{5}$
$b=\dfrac{3}{5}$
Now, we have slope $m=\dfrac{3}{5}$ and the $y$-intercept $-b=\dfrac{3}{5}$
Put this value in the equation of the line in slope intercept form is
$y=\dfrac{3}{5}x+\dfrac{3}{5}$
Additional Information:
Slope intercept equation of vertical and horizontal lines. The equation of vertical lines is $x=b$ Since a vertical goes straight point on a vertical line is the same. Therefore whatever the $x$ value is also the value of $b.$
For instance the red line in the picture below is graph of the $x=1$
The equation of a horizontal line is $0$ is the general formula for the standard equation $y=mx+b$ becomes ${{y}_{0}}x+b$ $y=b$
Also since the line horizontal every point on that line has the same $y$ value. The $y$ value is therefore also the $y$ intercept for instance the red line.
Note: While solving this type of problem also slope intercept it is easy to solve.
Use the correct formula for students making mistakes on slope formulas.
It is $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ students write $\dfrac{{{x}_{2}}-{{x}_{1}}}{{{y}_{2}}-{{y}_{1}}}$
Sometimes so write carefully.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

