Answer
Verified
426.9k+ views
Hint: We should know the standard form equations to solve this question. First we have to know the formula for the circle whose diameter has endpoints. Then we have to substitute given endpoints in the formula and simplify it to get the equation of the circle.
Complete step by step answer:
The standard equation of the circle with center \[\left( h,k \right)\] and radius \[r\] is
\[{{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{r}^{2}}\].
The equation of the circle diameter with endpoints \[\left( {{x}_{1}},{{x}_{2}} \right)\]and \[\left( {{y}_{1}},{{y}_{2}} \right)\] is
\[\left( x-{{x}_{1}} \right)\left( x-{{x}_{2}} \right)+\left( y-{{y}_{1}} \right)\left( y-{{y}_{2}} \right)=0\].
We will use the above formula to solve our problem.
Given endpoints are \[\left( -2,4 \right)\] and \[\left( 4,12 \right)\]
We already discussed the equation of circle whose diameter with endpoints \[\left( {{x}_{1}},{{x}_{2}} \right)\]and \[\left( {{y}_{1}},{{y}_{2}} \right)\] is
given by
\[\left( x-{{x}_{1}} \right)\left( x-{{x}_{2}} \right)+\left( y-{{y}_{1}} \right)\left( y-{{y}_{2}} \right)=0\]
Now we have the circle whose diameter has endpoints \[\left( -2,4 \right)\] and \[\left( 4,12 \right)\].
So we substitute these formulas in the equation we have.
After substitution we will get the equation as
\[\Rightarrow \left( x-\left( -2 \right) \right)\left( x-4 \right)+\left( y-4 \right)\left( y-12 \right)=0\]
By simplifying we will get
\[\Rightarrow \left( x+2 \right)\left( x-4 \right)+\left( y-4 \right)\left( y-12 \right)=0\]
Now we have to multiply the terms with each other.
By multiplying first two terms we will get
\[\Rightarrow {{x}^{2}}+2x-4x-8+\left( y-4 \right)\left( y-12 \right)=0\]
Now we have to multiply the next two terms.
\[\Rightarrow {{x}^{2}}+2x-4x-8+{{y}^{2}}-12y-4y+48=0\]
Now we have to simplify the equation accordingly to arrive at the solution.
Now we have to add or subtract the like terms. We will get
\[\Rightarrow {{x}^{2}}-2x-8+{{y}^{2}}-16y+48=0\]
By further simplifying we will get
\[\Rightarrow {{x}^{2}}-2x+{{y}^{2}}-16y+40=0\]
Now we have to rearrange the terms accordingly. We will get
\[\Rightarrow {{x}^{2}}+{{y}^{2}}-2x-16y+40=0\]
So the equation of the circle whose diameter has endpoints \[\left( -2,4 \right)\] and \[\left( 4,12 \right)\] is
\[{{x}^{2}}+{{y}^{2}}-2x-16y+40=0\].
Note:
We can also do this in another way. First we have to find the center of the diameter and then we have to find the radius of the circle. After that we have to substitute in the standard equation of circle. We can do it in either way. But the above said method is the simplest one.
Complete step by step answer:
The standard equation of the circle with center \[\left( h,k \right)\] and radius \[r\] is
\[{{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{r}^{2}}\].
The equation of the circle diameter with endpoints \[\left( {{x}_{1}},{{x}_{2}} \right)\]and \[\left( {{y}_{1}},{{y}_{2}} \right)\] is
\[\left( x-{{x}_{1}} \right)\left( x-{{x}_{2}} \right)+\left( y-{{y}_{1}} \right)\left( y-{{y}_{2}} \right)=0\].
We will use the above formula to solve our problem.
Given endpoints are \[\left( -2,4 \right)\] and \[\left( 4,12 \right)\]
We already discussed the equation of circle whose diameter with endpoints \[\left( {{x}_{1}},{{x}_{2}} \right)\]and \[\left( {{y}_{1}},{{y}_{2}} \right)\] is
given by
\[\left( x-{{x}_{1}} \right)\left( x-{{x}_{2}} \right)+\left( y-{{y}_{1}} \right)\left( y-{{y}_{2}} \right)=0\]
Now we have the circle whose diameter has endpoints \[\left( -2,4 \right)\] and \[\left( 4,12 \right)\].
So we substitute these formulas in the equation we have.
After substitution we will get the equation as
\[\Rightarrow \left( x-\left( -2 \right) \right)\left( x-4 \right)+\left( y-4 \right)\left( y-12 \right)=0\]
By simplifying we will get
\[\Rightarrow \left( x+2 \right)\left( x-4 \right)+\left( y-4 \right)\left( y-12 \right)=0\]
Now we have to multiply the terms with each other.
By multiplying first two terms we will get
\[\Rightarrow {{x}^{2}}+2x-4x-8+\left( y-4 \right)\left( y-12 \right)=0\]
Now we have to multiply the next two terms.
\[\Rightarrow {{x}^{2}}+2x-4x-8+{{y}^{2}}-12y-4y+48=0\]
Now we have to simplify the equation accordingly to arrive at the solution.
Now we have to add or subtract the like terms. We will get
\[\Rightarrow {{x}^{2}}-2x-8+{{y}^{2}}-16y+48=0\]
By further simplifying we will get
\[\Rightarrow {{x}^{2}}-2x+{{y}^{2}}-16y+40=0\]
Now we have to rearrange the terms accordingly. We will get
\[\Rightarrow {{x}^{2}}+{{y}^{2}}-2x-16y+40=0\]
So the equation of the circle whose diameter has endpoints \[\left( -2,4 \right)\] and \[\left( 4,12 \right)\] is
\[{{x}^{2}}+{{y}^{2}}-2x-16y+40=0\].
Note:
We can also do this in another way. First we have to find the center of the diameter and then we have to find the radius of the circle. After that we have to substitute in the standard equation of circle. We can do it in either way. But the above said method is the simplest one.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE