
Work done in vaporization of one mole of water at 373K against the pressure of 1atm is approximately :
A.$\, - 3100J\,$
B.$\, - 31.20J\,$
C.$\, - 20.2J\,$
D.$\, + 3100J\,$
Answer
561.9k+ views
Hint: In thermodynamics, there is no work in a system, and work is an operation performed by or on a system. Gases can work against continuous exterior pressure by expansion or compression. Gas work is often also called pressure-volume or $\,PV\,$ work.
Formula used:
$PV = nRT\,$
Where, $\,P = \,$Pressure
$\,V = \,$Volume
$\,n = \,$number of moles
$\,R = \,$Universal gas constant
$\,T = \,$absolute temperature
$\,W = - {P_{ext}} \times \Delta V$
Where $\,W = \,$Work
$\,{P_{ext}} = \,$External Pressure
$\,\Delta V = \,$Change in volume
Complete step by step solution:
Let us first calculate volume of water before vaporization;
$V = \dfrac{m}{d}\,$
Where, $\,V = \,$volume, $\,m = \,$mass and $\,d = \,$density
Here, we have one mole of water which is equal to $\,18g\,$
Therefore, $\,V = \dfrac{{18g}}{{1g/ml}}\,$
As the density of one mole of water is equal to $\,1g/ml\,$at $\,373K\,$
Therefore by solving the equation we get, $\,{V_1} = 18ml\, = 0.018l\,$
Now, let’s calculate $\,{V_2}\,$ which is the volume of water after vaporization;
$P{V_2} = nRT\,$
Where, $\,P = \,$ Pressure
$\,{V_2} = \,$ Volume after vaporization
$\,n = \,$ number of moles
$\,R = \,$ Universal gas constant
$\,T = \,$ absolute temperature
From this we get;
$\,{V_2} = \dfrac{{nRT}}{P}\,$ as per ideal gas equation mentioned above
$\,n = 1,\,R = 0.0821L.atm/mol.K,\,T = 373K,P = 1atm\,$
Substituting them in the equation we get;
$\, \Rightarrow \dfrac{{1 \times 0.0821 \times 373}}{1} = 30.6l\,$
Here $\,{V_1}\,$ is negligible with respect to $\,{V_2}\,$, So we can ignore $\,{V_1}\,$and therefore, $\,\Delta V = 30.6l\,$
Now, let us calculate the work done here,
$W = - {P_{ext}} \times \Delta V\,$
Where $\,W = \,$Work
$\,{P_{ext}} = \,$External Pressure
$\,\Delta V = \,$Change in volume
Here, by converting the unit of volume and pressure we get;
$\,\Delta V = 30.6l = 30.6 \times {10^{ - 3}}{m^3}\,$and $\,P = 1atm = 101325Pascal\,$
Therefore, $\,W = \, - 101325 \times 30.6 \times {10^{ - 3}}\,$
$\, = - 3100J\,$
Here, a negative sign shows that work is done by the system.
So, for this question option A is the correct answer.
Note:
Work done by a system in thermodynamics is the energy transmitted by the system to its surroundings by a process by which the system can exert macroscopic forces on its surroundings naturally, where those forces and their external effects can be calculated. So, in sign conventions, the energy transmitted here is represented as negative work done by the system on its surroundings.
Formula used:
$PV = nRT\,$
Where, $\,P = \,$Pressure
$\,V = \,$Volume
$\,n = \,$number of moles
$\,R = \,$Universal gas constant
$\,T = \,$absolute temperature
$\,W = - {P_{ext}} \times \Delta V$
Where $\,W = \,$Work
$\,{P_{ext}} = \,$External Pressure
$\,\Delta V = \,$Change in volume
Complete step by step solution:
Let us first calculate volume of water before vaporization;
$V = \dfrac{m}{d}\,$
Where, $\,V = \,$volume, $\,m = \,$mass and $\,d = \,$density
Here, we have one mole of water which is equal to $\,18g\,$
Therefore, $\,V = \dfrac{{18g}}{{1g/ml}}\,$
As the density of one mole of water is equal to $\,1g/ml\,$at $\,373K\,$
Therefore by solving the equation we get, $\,{V_1} = 18ml\, = 0.018l\,$
Now, let’s calculate $\,{V_2}\,$ which is the volume of water after vaporization;
$P{V_2} = nRT\,$
Where, $\,P = \,$ Pressure
$\,{V_2} = \,$ Volume after vaporization
$\,n = \,$ number of moles
$\,R = \,$ Universal gas constant
$\,T = \,$ absolute temperature
From this we get;
$\,{V_2} = \dfrac{{nRT}}{P}\,$ as per ideal gas equation mentioned above
$\,n = 1,\,R = 0.0821L.atm/mol.K,\,T = 373K,P = 1atm\,$
Substituting them in the equation we get;
$\, \Rightarrow \dfrac{{1 \times 0.0821 \times 373}}{1} = 30.6l\,$
Here $\,{V_1}\,$ is negligible with respect to $\,{V_2}\,$, So we can ignore $\,{V_1}\,$and therefore, $\,\Delta V = 30.6l\,$
Now, let us calculate the work done here,
$W = - {P_{ext}} \times \Delta V\,$
Where $\,W = \,$Work
$\,{P_{ext}} = \,$External Pressure
$\,\Delta V = \,$Change in volume
Here, by converting the unit of volume and pressure we get;
$\,\Delta V = 30.6l = 30.6 \times {10^{ - 3}}{m^3}\,$and $\,P = 1atm = 101325Pascal\,$
Therefore, $\,W = \, - 101325 \times 30.6 \times {10^{ - 3}}\,$
$\, = - 3100J\,$
Here, a negative sign shows that work is done by the system.
So, for this question option A is the correct answer.
Note:
Work done by a system in thermodynamics is the energy transmitted by the system to its surroundings by a process by which the system can exert macroscopic forces on its surroundings naturally, where those forces and their external effects can be calculated. So, in sign conventions, the energy transmitted here is represented as negative work done by the system on its surroundings.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

