
How many words, with or without words meaning each of 3 vowels and 2 consonants can be formed from the letter of the word INVOLUTE?
Answer
606.9k+ views
Hint: Find number of ways of selection from word “INVOLUTE”. Total number of letters is 5 multiplied by the number of arrangements.
We know the given word “INVOLUTE”.
Out of this, the total number of vowels= 4(I, O, U, E)
Total number of constants= 4(N, V, L, T)
We have to choose 3 vowels out of the 4 vowels in the word.
\[\therefore \]The number of ways to choose\[={}^{4}{{C}_{3}}-\left( 1 \right)\]
We have to choose 2 consonants out of the 4 consonants.
\[\therefore \]The number of ways to choose\[={}^{4}{{C}_{2}}-\left( 2 \right)\]
Thus, the number of ways of selecting 3 vowels and 2 consonants
\[={}^{4}{{C}_{3}}\times {}^{4}{{C}_{2}}\][from eq (1) and (2)]
We have to simplify \[{}^{4}{{C}_{3}}\times {}^{4}{{C}_{2}}\]
They are of the form \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
\[\begin{align}
& \therefore {}^{4}{{C}_{3}}=\dfrac{4!}{3!\left( 4-3 \right)!}=\dfrac{4!}{3!1!} \\
& {}^{4}{{C}_{2}}=\dfrac{4!}{2!\left( 4-2 \right)!}=\dfrac{4!}{3!2!} \\
\end{align}\]
\[\begin{align}
& {}^{4}{{C}_{3}}\times {}^{4}{{C}_{2}}=\dfrac{4!}{3!1!}\times \dfrac{4!}{3!2!} \\
& {}^{4}{{C}_{3}}\times {}^{4}{{C}_{2}}=\dfrac{4!\times 3!}{3!\times 1!}\times \dfrac{4\times 3\times 2\times 1}{2\times 1\times 2\times 1} \\
\end{align}\]
\[\left\{ \begin{align}
& \because 4!=4\times 3\times 2\times 1 \\
& 3!=3\times 2\times 1 \\
& 2!=2\times 1 \\
& 1!=1 \\
& 0!=1 \\
\end{align} \right\}\]
Cancel out 3! on denominator and denominator.
\[\Rightarrow \]Cancel out like terms
\[=4\times 2\times 3=24\]
\[\therefore \]The number of ways of selecting 3 vowels and 2 consonants = 24
Total number of letters = 3 vowels + 2 consonants = 5 letters
We have to arrange these 5 letters.
\[\therefore \]Number of arrangements of 5 letters \[={}^{5}{{P}_{5}}\]
This is the form \[{}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}\left\{ \begin{align}
& \because 5!=5\times 4\times 3\times 2\times 1 \\
& 0!=1 \\
\end{align} \right\}\]
\[\begin{align}
& {}^{5}{{P}_{5}}=\dfrac{5!}{\left( 5-5 \right)!}=\dfrac{5!}{0!} \\
& {}^{5}{{P}_{5}}=\dfrac{5\times 4\times 3\times 2\times 1}{1}=120 \\
\end{align}\]
Total number of words = Number of ways of selecting \[\times \]number of arrangements
Total number of words = \[24\times 120=2880\]
Total number of words \[=2880\]
Note: We use the combination \[\left( {}^{n}{{C}_{r}} \right)\] in place where the order doesn’t matter. Permutation \[\left( {}^{n}{{P}_{r}} \right)\] is used in the place where order matters.
\[\therefore \]Permutation is an ordered combination.
We know the given word “INVOLUTE”.
Out of this, the total number of vowels= 4(I, O, U, E)
Total number of constants= 4(N, V, L, T)
We have to choose 3 vowels out of the 4 vowels in the word.
\[\therefore \]The number of ways to choose\[={}^{4}{{C}_{3}}-\left( 1 \right)\]
We have to choose 2 consonants out of the 4 consonants.
\[\therefore \]The number of ways to choose\[={}^{4}{{C}_{2}}-\left( 2 \right)\]
Thus, the number of ways of selecting 3 vowels and 2 consonants
\[={}^{4}{{C}_{3}}\times {}^{4}{{C}_{2}}\][from eq (1) and (2)]
We have to simplify \[{}^{4}{{C}_{3}}\times {}^{4}{{C}_{2}}\]
They are of the form \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
\[\begin{align}
& \therefore {}^{4}{{C}_{3}}=\dfrac{4!}{3!\left( 4-3 \right)!}=\dfrac{4!}{3!1!} \\
& {}^{4}{{C}_{2}}=\dfrac{4!}{2!\left( 4-2 \right)!}=\dfrac{4!}{3!2!} \\
\end{align}\]
\[\begin{align}
& {}^{4}{{C}_{3}}\times {}^{4}{{C}_{2}}=\dfrac{4!}{3!1!}\times \dfrac{4!}{3!2!} \\
& {}^{4}{{C}_{3}}\times {}^{4}{{C}_{2}}=\dfrac{4!\times 3!}{3!\times 1!}\times \dfrac{4\times 3\times 2\times 1}{2\times 1\times 2\times 1} \\
\end{align}\]
\[\left\{ \begin{align}
& \because 4!=4\times 3\times 2\times 1 \\
& 3!=3\times 2\times 1 \\
& 2!=2\times 1 \\
& 1!=1 \\
& 0!=1 \\
\end{align} \right\}\]
Cancel out 3! on denominator and denominator.
\[\Rightarrow \]Cancel out like terms
\[=4\times 2\times 3=24\]
\[\therefore \]The number of ways of selecting 3 vowels and 2 consonants = 24
Total number of letters = 3 vowels + 2 consonants = 5 letters
We have to arrange these 5 letters.
\[\therefore \]Number of arrangements of 5 letters \[={}^{5}{{P}_{5}}\]
This is the form \[{}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}\left\{ \begin{align}
& \because 5!=5\times 4\times 3\times 2\times 1 \\
& 0!=1 \\
\end{align} \right\}\]
\[\begin{align}
& {}^{5}{{P}_{5}}=\dfrac{5!}{\left( 5-5 \right)!}=\dfrac{5!}{0!} \\
& {}^{5}{{P}_{5}}=\dfrac{5\times 4\times 3\times 2\times 1}{1}=120 \\
\end{align}\]
Total number of words = Number of ways of selecting \[\times \]number of arrangements
Total number of words = \[24\times 120=2880\]
Total number of words \[=2880\]
Note: We use the combination \[\left( {}^{n}{{C}_{r}} \right)\] in place where the order doesn’t matter. Permutation \[\left( {}^{n}{{P}_{r}} \right)\] is used in the place where order matters.
\[\therefore \]Permutation is an ordered combination.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

