How many words, with or without words meaning each of 3 vowels and 2 consonants can be formed from the letter of the word INVOLUTE?
Last updated date: 23rd Mar 2023
•
Total views: 306.9k
•
Views today: 7.85k
Answer
306.9k+ views
Hint: Find number of ways of selection from word “INVOLUTE”. Total number of letters is 5 multiplied by the number of arrangements.
We know the given word “INVOLUTE”.
Out of this, the total number of vowels= 4(I, O, U, E)
Total number of constants= 4(N, V, L, T)
We have to choose 3 vowels out of the 4 vowels in the word.
\[\therefore \]The number of ways to choose\[={}^{4}{{C}_{3}}-\left( 1 \right)\]
We have to choose 2 consonants out of the 4 consonants.
\[\therefore \]The number of ways to choose\[={}^{4}{{C}_{2}}-\left( 2 \right)\]
Thus, the number of ways of selecting 3 vowels and 2 consonants
\[={}^{4}{{C}_{3}}\times {}^{4}{{C}_{2}}\][from eq (1) and (2)]
We have to simplify \[{}^{4}{{C}_{3}}\times {}^{4}{{C}_{2}}\]
They are of the form \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
\[\begin{align}
& \therefore {}^{4}{{C}_{3}}=\dfrac{4!}{3!\left( 4-3 \right)!}=\dfrac{4!}{3!1!} \\
& {}^{4}{{C}_{2}}=\dfrac{4!}{2!\left( 4-2 \right)!}=\dfrac{4!}{3!2!} \\
\end{align}\]
\[\begin{align}
& {}^{4}{{C}_{3}}\times {}^{4}{{C}_{2}}=\dfrac{4!}{3!1!}\times \dfrac{4!}{3!2!} \\
& {}^{4}{{C}_{3}}\times {}^{4}{{C}_{2}}=\dfrac{4!\times 3!}{3!\times 1!}\times \dfrac{4\times 3\times 2\times 1}{2\times 1\times 2\times 1} \\
\end{align}\]
\[\left\{ \begin{align}
& \because 4!=4\times 3\times 2\times 1 \\
& 3!=3\times 2\times 1 \\
& 2!=2\times 1 \\
& 1!=1 \\
& 0!=1 \\
\end{align} \right\}\]
Cancel out 3! on denominator and denominator.
\[\Rightarrow \]Cancel out like terms
\[=4\times 2\times 3=24\]
\[\therefore \]The number of ways of selecting 3 vowels and 2 consonants = 24
Total number of letters = 3 vowels + 2 consonants = 5 letters
We have to arrange these 5 letters.
\[\therefore \]Number of arrangements of 5 letters \[={}^{5}{{P}_{5}}\]
This is the form \[{}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}\left\{ \begin{align}
& \because 5!=5\times 4\times 3\times 2\times 1 \\
& 0!=1 \\
\end{align} \right\}\]
\[\begin{align}
& {}^{5}{{P}_{5}}=\dfrac{5!}{\left( 5-5 \right)!}=\dfrac{5!}{0!} \\
& {}^{5}{{P}_{5}}=\dfrac{5\times 4\times 3\times 2\times 1}{1}=120 \\
\end{align}\]
Total number of words = Number of ways of selecting \[\times \]number of arrangements
Total number of words = \[24\times 120=2880\]
Total number of words \[=2880\]
Note: We use the combination \[\left( {}^{n}{{C}_{r}} \right)\] in place where the order doesn’t matter. Permutation \[\left( {}^{n}{{P}_{r}} \right)\] is used in the place where order matters.
\[\therefore \]Permutation is an ordered combination.
We know the given word “INVOLUTE”.
Out of this, the total number of vowels= 4(I, O, U, E)
Total number of constants= 4(N, V, L, T)
We have to choose 3 vowels out of the 4 vowels in the word.
\[\therefore \]The number of ways to choose\[={}^{4}{{C}_{3}}-\left( 1 \right)\]
We have to choose 2 consonants out of the 4 consonants.
\[\therefore \]The number of ways to choose\[={}^{4}{{C}_{2}}-\left( 2 \right)\]
Thus, the number of ways of selecting 3 vowels and 2 consonants
\[={}^{4}{{C}_{3}}\times {}^{4}{{C}_{2}}\][from eq (1) and (2)]
We have to simplify \[{}^{4}{{C}_{3}}\times {}^{4}{{C}_{2}}\]
They are of the form \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
\[\begin{align}
& \therefore {}^{4}{{C}_{3}}=\dfrac{4!}{3!\left( 4-3 \right)!}=\dfrac{4!}{3!1!} \\
& {}^{4}{{C}_{2}}=\dfrac{4!}{2!\left( 4-2 \right)!}=\dfrac{4!}{3!2!} \\
\end{align}\]
\[\begin{align}
& {}^{4}{{C}_{3}}\times {}^{4}{{C}_{2}}=\dfrac{4!}{3!1!}\times \dfrac{4!}{3!2!} \\
& {}^{4}{{C}_{3}}\times {}^{4}{{C}_{2}}=\dfrac{4!\times 3!}{3!\times 1!}\times \dfrac{4\times 3\times 2\times 1}{2\times 1\times 2\times 1} \\
\end{align}\]
\[\left\{ \begin{align}
& \because 4!=4\times 3\times 2\times 1 \\
& 3!=3\times 2\times 1 \\
& 2!=2\times 1 \\
& 1!=1 \\
& 0!=1 \\
\end{align} \right\}\]
Cancel out 3! on denominator and denominator.
\[\Rightarrow \]Cancel out like terms
\[=4\times 2\times 3=24\]
\[\therefore \]The number of ways of selecting 3 vowels and 2 consonants = 24
Total number of letters = 3 vowels + 2 consonants = 5 letters
We have to arrange these 5 letters.
\[\therefore \]Number of arrangements of 5 letters \[={}^{5}{{P}_{5}}\]
This is the form \[{}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}\left\{ \begin{align}
& \because 5!=5\times 4\times 3\times 2\times 1 \\
& 0!=1 \\
\end{align} \right\}\]
\[\begin{align}
& {}^{5}{{P}_{5}}=\dfrac{5!}{\left( 5-5 \right)!}=\dfrac{5!}{0!} \\
& {}^{5}{{P}_{5}}=\dfrac{5\times 4\times 3\times 2\times 1}{1}=120 \\
\end{align}\]
Total number of words = Number of ways of selecting \[\times \]number of arrangements
Total number of words = \[24\times 120=2880\]
Total number of words \[=2880\]
Note: We use the combination \[\left( {}^{n}{{C}_{r}} \right)\] in place where the order doesn’t matter. Permutation \[\left( {}^{n}{{P}_{r}} \right)\] is used in the place where order matters.
\[\therefore \]Permutation is an ordered combination.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
