Answer
Verified
495k+ views
Hint:- Find, total number of vowels and consonants in the given word.
As we know that in English alphabets A, E, I, O and U are vowels.
And the rest of the alphabets are consonants.
So, we can see that in the word DAUGHTER.
\[ \Rightarrow \]Total number of letters are 8. In which,
\[ \Rightarrow \]Total vowels \[ = {\text{ }}3\]
\[ \Rightarrow \]Total consonants \[ = 5\]
Now, we had to make a word using five letters of the given word.
Out of the five letters 2 should be vowels and 3 should be consonants.
\[ \Rightarrow \]So, here we had to choose 2 vowels out of the 3 vowels,
And that will be done in \[{}^3{C_2}\]\[{\text{ = 3 }}\]ways.
\[ \Rightarrow \]And 3 consonants out of 5 consonants.
And that will be done in \[{}^5{C_3}{\text{ = 10 }}\]ways.
\[ \Rightarrow \]And then arrange that five letters of word in \[5!\] ways.
So, total number of ways of forming a five letters word from the given word
DAUGHTER having 2 vowels and 3 consonants will be;
\[ \Rightarrow \]Total ways \[ = {}^3{C_2}*{}^5{C_3}*5! = 3600\].
Note:- Whenever we came up with this type of problems then first, we should
find the number of ways for selection of vowels and then find number of ways
for the selection of consonants. And at last never forget to multiply the number
of ways by \[n!\] to get the total number of ways. As it is given in the question that
a word of five letters can also be meaningless.
As we know that in English alphabets A, E, I, O and U are vowels.
And the rest of the alphabets are consonants.
So, we can see that in the word DAUGHTER.
\[ \Rightarrow \]Total number of letters are 8. In which,
\[ \Rightarrow \]Total vowels \[ = {\text{ }}3\]
\[ \Rightarrow \]Total consonants \[ = 5\]
Now, we had to make a word using five letters of the given word.
Out of the five letters 2 should be vowels and 3 should be consonants.
\[ \Rightarrow \]So, here we had to choose 2 vowels out of the 3 vowels,
And that will be done in \[{}^3{C_2}\]\[{\text{ = 3 }}\]ways.
\[ \Rightarrow \]And 3 consonants out of 5 consonants.
And that will be done in \[{}^5{C_3}{\text{ = 10 }}\]ways.
\[ \Rightarrow \]And then arrange that five letters of word in \[5!\] ways.
So, total number of ways of forming a five letters word from the given word
DAUGHTER having 2 vowels and 3 consonants will be;
\[ \Rightarrow \]Total ways \[ = {}^3{C_2}*{}^5{C_3}*5! = 3600\].
Note:- Whenever we came up with this type of problems then first, we should
find the number of ways for selection of vowels and then find number of ways
for the selection of consonants. And at last never forget to multiply the number
of ways by \[n!\] to get the total number of ways. As it is given in the question that
a word of five letters can also be meaningless.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE