
How many words can be formed with the letters of the word $\text{PATALIPUTRA}$ without changing the relative positions of vowels and consonants?
A. 720
B. 1800
C. 3600
D. 4320
Answer
580.8k+ views
Hint: Here, count the number of letters in the given word and also count the number of times a particular letter is repeated, and apply permutation formula to find the number of arrangements.
Complete step by step answer:
We are given the word “PATALIPUTRA” in which total number of letters are 11 (i.e. $P, A, T, A, L, I, P, U, T, R, A$).
Total number of vowels = $5 (i.e. 3 A’s, 1 I $ and $1 U)$
Total number of consonants = $6 (i.e. 2 P’s, 2 T’s, 1 L $ and $1 R)$
Also, given that words can be formed with the letters of the word PATALIPUTRA without changing the relative positions of vowels and consonants.
So, total number of words = $\dfrac{{5!}}{{3!}} \times \dfrac{{6!}}{{2!2!}}$
[Permutation formula: In arrangement of n letters in which letters a and b are repeated $x$ and $y$ times, then the number of possible arrangements is given as $\dfrac{{n!}}{{x!y!}}$.
Here, $6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1$
$5! = 5 \times 4 \times 3 \times 2 \times 1$
$3! = 3 \times 2 \times 1$
$2! = 2 \times 1$
Putting all values and simplifying, we get
Total number of words = $4 \times 5 \times 180 = 3600$
Therefore, the number of words that can be formed with the letters of the word $\text{PATALIPUTRA}$ without changing the relative positions of vowels and consonants is 3600. Hence, option (C) is correct.
Note:
In these types of question, first check whether question is asked about combination or
permutation. Permutation means arrangement of things, and combination means taking a particular number of items at a time (arrangement does not matter in combination). Then apply the proper formula as required. Observe that the given condition is with or without repetition condition and proceed for error free calculations.
Complete step by step answer:
We are given the word “PATALIPUTRA” in which total number of letters are 11 (i.e. $P, A, T, A, L, I, P, U, T, R, A$).
Total number of vowels = $5 (i.e. 3 A’s, 1 I $ and $1 U)$
Total number of consonants = $6 (i.e. 2 P’s, 2 T’s, 1 L $ and $1 R)$
Also, given that words can be formed with the letters of the word PATALIPUTRA without changing the relative positions of vowels and consonants.
So, total number of words = $\dfrac{{5!}}{{3!}} \times \dfrac{{6!}}{{2!2!}}$
[Permutation formula: In arrangement of n letters in which letters a and b are repeated $x$ and $y$ times, then the number of possible arrangements is given as $\dfrac{{n!}}{{x!y!}}$.
Here, $6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1$
$5! = 5 \times 4 \times 3 \times 2 \times 1$
$3! = 3 \times 2 \times 1$
$2! = 2 \times 1$
Putting all values and simplifying, we get
Total number of words = $4 \times 5 \times 180 = 3600$
Therefore, the number of words that can be formed with the letters of the word $\text{PATALIPUTRA}$ without changing the relative positions of vowels and consonants is 3600. Hence, option (C) is correct.
Note:
In these types of question, first check whether question is asked about combination or
permutation. Permutation means arrangement of things, and combination means taking a particular number of items at a time (arrangement does not matter in combination). Then apply the proper formula as required. Observe that the given condition is with or without repetition condition and proceed for error free calculations.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

