Without using the trigonometric tables, evaluate ${\sin ^2}{34^ \circ } + {\sin ^2}{56^ \circ } + 2\tan {18^ \circ }\tan {72^ \circ } - {\cot ^2}{30^ \circ }$.
Last updated date: 26th Mar 2023
•
Total views: 207k
•
Views today: 2.84k
Answer
207k+ views
Hint: The given problem requires us to simplify the given trigonometric expression. The question requires thorough knowledge of trigonometric functions, formulae and identities. The question describes the wide ranging applications of trigonometric identities and formulae. We must keep in mind the trigonometric identities and formulae while solving such questions.
Complete step-by-step answer:
In the given question, we are required to evaluate the value of the trigonometric expression ${\sin ^2}{34^ \circ } + {\sin ^2}{56^ \circ } + 2\tan {18^ \circ }\tan {72^ \circ } - {\cot ^2}{30^ \circ }$ using the basic concepts of trigonometry and identities.
So, we have, ${\sin ^2}{34^ \circ } + {\sin ^2}{56^ \circ } + 2\tan {18^ \circ }\tan {72^ \circ } - {\cot ^2}{30^ \circ }$
Firstly, we simplify the given trigonometric expression using the trigonometric formula \[\cos \left( {{{90}^ \circ } - x} \right) = \sin x\]. So, we get,
\[ \Rightarrow {\sin ^2}{34^ \circ } + {\cos ^2}\left( {{{90}^ \circ } - {{56}^ \circ }} \right) + 2\tan {18^ \circ }\tan {72^ \circ } - {\cot ^2}{30^ \circ }\]
Now, we also know that tangent and cotangent are complementary functions of each other. So, we have, \[\tan \left( {{{90}^ \circ } - x} \right) = \cot x\]. Simplifying the expression, we get,
\[ \Rightarrow {\sin ^2}{34^ \circ } + {\cos ^2}{34^ \circ } + 2\tan {18^ \circ }\cot \left( {{{90}^ \circ } - {{72}^ \circ }} \right) - {\cot ^2}{30^ \circ }\]
\[ \Rightarrow {\sin ^2}{34^ \circ } + {\cos ^2}{34^ \circ } + 2\tan {18^ \circ }\cot \left( {{{18}^ \circ }} \right) - {\cot ^2}{30^ \circ }\]
Now, we know that the tangent and cotangent are reciprocal trigonometric functions that means $\cot x\tan x = 1$. So, we get the value of $\cot {18^ \circ }\tan {18^ \circ } = 1$
Hence, we get,
\[ \Rightarrow {\sin ^2}{34^ \circ } + {\cos ^2}{34^ \circ } + 2\left( 1 \right) - {\cot ^2}{30^ \circ }\]
Using the trigonometric identity ${\sin ^2}x + {\cos ^2}x = 1$, we get,
\[ \Rightarrow 1 + 2 - {\cot ^2}{30^ \circ }\]
We also know that the value of $\cot {30^ \circ }$ is $\sqrt 3 $. So, substituting the value of $\cot {30^ \circ }$ in the trigonometric expression, we get,
\[ \Rightarrow 3 - {\left( {\sqrt 3 } \right)^2}\]
Simplifying the expression further, we get,
\[ \Rightarrow 3 - 3 = 0\]
So, we get the value of trigonometric expression ${\sin ^2}{34^ \circ } + {\sin ^2}{56^ \circ } + 2\tan {18^ \circ }\tan {72^ \circ } - {\cot ^2}{30^ \circ }$ as zero.
So, the correct answer is “0”.
Note: There are six trigonometric ratios: $\sin \theta $, $\cos \theta $, $\tan \theta $, $\cos ec\theta $, $\sec \theta $and $\cot \theta $. Basic trigonometric identities include ${\sin ^2}\theta + {\cos ^2}\theta = 1$, ${\sec ^2}\theta = {\tan ^2}\theta + 1$ and $\cos e{c^2}\theta = {\cot ^2}\theta + 1$. These identities are of vital importance for solving any question involving trigonometric functions and identities. All the trigonometric ratios can be converted into each other using the simple trigonometric identities listed above. The given problem involves the use of trigonometric formulae and identities. Such questions require thorough knowledge of trigonometric conversions and ratios. Algebraic operations and rules like transposition rule come into significant use while solving such problems.
Complete step-by-step answer:
In the given question, we are required to evaluate the value of the trigonometric expression ${\sin ^2}{34^ \circ } + {\sin ^2}{56^ \circ } + 2\tan {18^ \circ }\tan {72^ \circ } - {\cot ^2}{30^ \circ }$ using the basic concepts of trigonometry and identities.
So, we have, ${\sin ^2}{34^ \circ } + {\sin ^2}{56^ \circ } + 2\tan {18^ \circ }\tan {72^ \circ } - {\cot ^2}{30^ \circ }$
Firstly, we simplify the given trigonometric expression using the trigonometric formula \[\cos \left( {{{90}^ \circ } - x} \right) = \sin x\]. So, we get,
\[ \Rightarrow {\sin ^2}{34^ \circ } + {\cos ^2}\left( {{{90}^ \circ } - {{56}^ \circ }} \right) + 2\tan {18^ \circ }\tan {72^ \circ } - {\cot ^2}{30^ \circ }\]
Now, we also know that tangent and cotangent are complementary functions of each other. So, we have, \[\tan \left( {{{90}^ \circ } - x} \right) = \cot x\]. Simplifying the expression, we get,
\[ \Rightarrow {\sin ^2}{34^ \circ } + {\cos ^2}{34^ \circ } + 2\tan {18^ \circ }\cot \left( {{{90}^ \circ } - {{72}^ \circ }} \right) - {\cot ^2}{30^ \circ }\]
\[ \Rightarrow {\sin ^2}{34^ \circ } + {\cos ^2}{34^ \circ } + 2\tan {18^ \circ }\cot \left( {{{18}^ \circ }} \right) - {\cot ^2}{30^ \circ }\]
Now, we know that the tangent and cotangent are reciprocal trigonometric functions that means $\cot x\tan x = 1$. So, we get the value of $\cot {18^ \circ }\tan {18^ \circ } = 1$
Hence, we get,
\[ \Rightarrow {\sin ^2}{34^ \circ } + {\cos ^2}{34^ \circ } + 2\left( 1 \right) - {\cot ^2}{30^ \circ }\]
Using the trigonometric identity ${\sin ^2}x + {\cos ^2}x = 1$, we get,
\[ \Rightarrow 1 + 2 - {\cot ^2}{30^ \circ }\]
We also know that the value of $\cot {30^ \circ }$ is $\sqrt 3 $. So, substituting the value of $\cot {30^ \circ }$ in the trigonometric expression, we get,
\[ \Rightarrow 3 - {\left( {\sqrt 3 } \right)^2}\]
Simplifying the expression further, we get,
\[ \Rightarrow 3 - 3 = 0\]
So, we get the value of trigonometric expression ${\sin ^2}{34^ \circ } + {\sin ^2}{56^ \circ } + 2\tan {18^ \circ }\tan {72^ \circ } - {\cot ^2}{30^ \circ }$ as zero.
So, the correct answer is “0”.
Note: There are six trigonometric ratios: $\sin \theta $, $\cos \theta $, $\tan \theta $, $\cos ec\theta $, $\sec \theta $and $\cot \theta $. Basic trigonometric identities include ${\sin ^2}\theta + {\cos ^2}\theta = 1$, ${\sec ^2}\theta = {\tan ^2}\theta + 1$ and $\cos e{c^2}\theta = {\cot ^2}\theta + 1$. These identities are of vital importance for solving any question involving trigonometric functions and identities. All the trigonometric ratios can be converted into each other using the simple trigonometric identities listed above. The given problem involves the use of trigonometric formulae and identities. Such questions require thorough knowledge of trigonometric conversions and ratios. Algebraic operations and rules like transposition rule come into significant use while solving such problems.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
