Answer

Verified

351k+ views

**Hint**: The given problem requires us to simplify the given trigonometric expression. The question requires thorough knowledge of trigonometric functions, formulae and identities. The question describes the wide ranging applications of trigonometric identities and formulae. We must keep in mind the trigonometric identities and formulae while solving such questions.

**:**

__Complete step-by-step answer__In the given question, we are required to evaluate the value of the trigonometric expression ${\sin ^2}{34^ \circ } + {\sin ^2}{56^ \circ } + 2\tan {18^ \circ }\tan {72^ \circ } - {\cot ^2}{30^ \circ }$ using the basic concepts of trigonometry and identities.

So, we have, ${\sin ^2}{34^ \circ } + {\sin ^2}{56^ \circ } + 2\tan {18^ \circ }\tan {72^ \circ } - {\cot ^2}{30^ \circ }$

Firstly, we simplify the given trigonometric expression using the trigonometric formula \[\cos \left( {{{90}^ \circ } - x} \right) = \sin x\]. So, we get,

\[ \Rightarrow {\sin ^2}{34^ \circ } + {\cos ^2}\left( {{{90}^ \circ } - {{56}^ \circ }} \right) + 2\tan {18^ \circ }\tan {72^ \circ } - {\cot ^2}{30^ \circ }\]

Now, we also know that tangent and cotangent are complementary functions of each other. So, we have, \[\tan \left( {{{90}^ \circ } - x} \right) = \cot x\]. Simplifying the expression, we get,

\[ \Rightarrow {\sin ^2}{34^ \circ } + {\cos ^2}{34^ \circ } + 2\tan {18^ \circ }\cot \left( {{{90}^ \circ } - {{72}^ \circ }} \right) - {\cot ^2}{30^ \circ }\]

\[ \Rightarrow {\sin ^2}{34^ \circ } + {\cos ^2}{34^ \circ } + 2\tan {18^ \circ }\cot \left( {{{18}^ \circ }} \right) - {\cot ^2}{30^ \circ }\]

Now, we know that the tangent and cotangent are reciprocal trigonometric functions that means $\cot x\tan x = 1$. So, we get the value of $\cot {18^ \circ }\tan {18^ \circ } = 1$

Hence, we get,

\[ \Rightarrow {\sin ^2}{34^ \circ } + {\cos ^2}{34^ \circ } + 2\left( 1 \right) - {\cot ^2}{30^ \circ }\]

Using the trigonometric identity ${\sin ^2}x + {\cos ^2}x = 1$, we get,

\[ \Rightarrow 1 + 2 - {\cot ^2}{30^ \circ }\]

We also know that the value of $\cot {30^ \circ }$ is $\sqrt 3 $. So, substituting the value of $\cot {30^ \circ }$ in the trigonometric expression, we get,

\[ \Rightarrow 3 - {\left( {\sqrt 3 } \right)^2}\]

Simplifying the expression further, we get,

\[ \Rightarrow 3 - 3 = 0\]

So, we get the value of trigonometric expression ${\sin ^2}{34^ \circ } + {\sin ^2}{56^ \circ } + 2\tan {18^ \circ }\tan {72^ \circ } - {\cot ^2}{30^ \circ }$ as zero.

**So, the correct answer is “0”.**

**Note**: There are six trigonometric ratios: $\sin \theta $, $\cos \theta $, $\tan \theta $, $\cos ec\theta $, $\sec \theta $and $\cot \theta $. Basic trigonometric identities include ${\sin ^2}\theta + {\cos ^2}\theta = 1$, ${\sec ^2}\theta = {\tan ^2}\theta + 1$ and $\cos e{c^2}\theta = {\cot ^2}\theta + 1$. These identities are of vital importance for solving any question involving trigonometric functions and identities. All the trigonometric ratios can be converted into each other using the simple trigonometric identities listed above. The given problem involves the use of trigonometric formulae and identities. Such questions require thorough knowledge of trigonometric conversions and ratios. Algebraic operations and rules like transposition rule come into significant use while solving such problems.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE