
Will $\text{Fe}$ be oxidised to $\text{F}{{\text{e}}^{+2}}$ by reaction with 1 M $\text{HCl}$ ? $\text{E}{}^\circ $ for $\text{Fe/F}{{\text{e}}^{+2}}$=+0.44 volt.
Answer
575.1k+ views
Hint: The oxidation and reduction of any element occur. If the $\vartriangle \text{G}$, (it represents Gibbs free energy and describes the spontaneity of a process) of the reaction is negative for the reaction to take place spontaneously. First find $\vartriangle \text{G}$ of the reaction and then decide.
Complete answer: Let us find the net for the reaction. But we find $\text{E}{}^\circ $, we have first to write the equation dealing $\text{Fe}$ and $\text{HCl}$ in the reactants side to see the final products formed.
$\text{Fe} + 2\text{HCl}\to \text{FeC}{{\text{l}}_{2}} + {{Cl }_{2}}$, this reaction where $\text{HCl}$ is reduced to as the oxidation state has reduced from +2 to 0. But the oxidation state of $\text{Fe}$ which lost 2 electrons is changed from 0 to +2. Let us find $\text{E}{}^\circ $, it is given that $\text{E}{}^\circ $for$\text{Fe/F}{{\text{e}}^{+2}}$=+0.44 volt and $\text{E}{}^\circ $for ${{\text{H}}_{2}}/{{\text{H}}^{+}}$ is 0 volt.
So, $\text{E}{}^\circ $=$\text{E}_{\text{anode}}^{{}^\circ }-\text{E}_{\text{cathode}}^{{}^\circ }$, on anode is $\text{Fe}$ and on cathode is $\text{HCl}$ so the $\text{E}{}^\circ $ will be 0.44-0 volts which is equal to 0.44 volts. $\text{E}{}^\circ $ of the reaction is 0.44 volts.
The relation between $\text{E}{}^\circ $ and $\vartriangle \text{G}$ is $\vartriangle \text{G}$$=\text{-nF}{{\text{E}}^{{}^\circ }}$; where n is the number of electrons involved in the reaction and F is Faraday constant whose value is 96500 C/mol. As,$\text{E}{}^\circ $ is positive so $\vartriangle \text{G}$ will be negative due to – sign present in the formula. $\vartriangle \text{G}$ is negative; which tells us that the reaction will occur spontaneously.
The answer is $\text{Fe}$ will be oxidised to $\text{F}{{\text{e}}^{+2}}$ by the reaction with 1 M $\text{HCl}$.
Note: The question can be solved in two lines only, by just knowing the electrochemical series. We know in electrochemical series oxidation of $\text{Fe}$ lies above of the oxidation of ${{\text{H}}_{2}}$ so, the one which lies above is able to displace the other from its solution. Thus, $\text{Fe}$ gets converted to $\text{F}{{\text{e}}^{+2}}$. So, yes the reaction will proceed forward.
Complete answer: Let us find the net for the reaction. But we find $\text{E}{}^\circ $, we have first to write the equation dealing $\text{Fe}$ and $\text{HCl}$ in the reactants side to see the final products formed.
$\text{Fe} + 2\text{HCl}\to \text{FeC}{{\text{l}}_{2}} + {{Cl }_{2}}$, this reaction where $\text{HCl}$ is reduced to as the oxidation state has reduced from +2 to 0. But the oxidation state of $\text{Fe}$ which lost 2 electrons is changed from 0 to +2. Let us find $\text{E}{}^\circ $, it is given that $\text{E}{}^\circ $for$\text{Fe/F}{{\text{e}}^{+2}}$=+0.44 volt and $\text{E}{}^\circ $for ${{\text{H}}_{2}}/{{\text{H}}^{+}}$ is 0 volt.
So, $\text{E}{}^\circ $=$\text{E}_{\text{anode}}^{{}^\circ }-\text{E}_{\text{cathode}}^{{}^\circ }$, on anode is $\text{Fe}$ and on cathode is $\text{HCl}$ so the $\text{E}{}^\circ $ will be 0.44-0 volts which is equal to 0.44 volts. $\text{E}{}^\circ $ of the reaction is 0.44 volts.
The relation between $\text{E}{}^\circ $ and $\vartriangle \text{G}$ is $\vartriangle \text{G}$$=\text{-nF}{{\text{E}}^{{}^\circ }}$; where n is the number of electrons involved in the reaction and F is Faraday constant whose value is 96500 C/mol. As,$\text{E}{}^\circ $ is positive so $\vartriangle \text{G}$ will be negative due to – sign present in the formula. $\vartriangle \text{G}$ is negative; which tells us that the reaction will occur spontaneously.
The answer is $\text{Fe}$ will be oxidised to $\text{F}{{\text{e}}^{+2}}$ by the reaction with 1 M $\text{HCl}$.
Note: The question can be solved in two lines only, by just knowing the electrochemical series. We know in electrochemical series oxidation of $\text{Fe}$ lies above of the oxidation of ${{\text{H}}_{2}}$ so, the one which lies above is able to displace the other from its solution. Thus, $\text{Fe}$ gets converted to $\text{F}{{\text{e}}^{+2}}$. So, yes the reaction will proceed forward.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

