Which sample has the largest number of atoms?
(a)$1mg{\text{ of }}{C_4}{H_{10}}$
(b) $1mg{\text{ of }}{N_2}$
(c) $1mg{\text{ of }}Na$
(d) $1mL{\text{ of }}{H_2}O$
Answer
279k+ views
Hint: In periodic table the atomic weight of each element has been listed and this helps scientists to describe the mass of atoms. The sample of an element is weighed in grams and we can calculate the number of atoms if we have information of three pieces- atomic weight, grams and Avogadro’s number.
Complete answer:
First, calculate the total number of atoms present in the given sample and multiply it with Avogadro’s number $(N)$ and divide it by the molecular mass of the sample.
$1mg{\text{ of }}{C_4}{H_{10}} = 14 \times N \times {10^{ - 3}}{(58)^{ - 1}} = 1.45 \times {10^{20}}$ atoms.
$1mg{\text{ of }}{N_2} = 2N \times {10^{ - 3}}{(28)^{ - 1}} = 0.43 \times {10^{20}}$ atoms.
$1mg{\text{ of }}Na = N \times {10^{ - 3}}{(23)^{ - 1}} = 0.26 \times {10^{20}}$ atoms
$1mL = 1g{\text{ of }}{H_2}O = 3N{(18)^{ - 1}} = 1 \times {10^{23}}$ atoms. (Here $N$ is Avogadro’s number)
Therefore, option (D) $1mL{\text{ of }}{H_2}O$ has the largest number of atoms.
Note:
To find the largest number of atoms we need to remember the molecular mass of the sample. The total number of atoms present in a molecule is calculated by adding up the atoms present in them and the Avogadro’s number $(N)$ is $6.02 \times {10^{23}}$.
Complete answer:
First, calculate the total number of atoms present in the given sample and multiply it with Avogadro’s number $(N)$ and divide it by the molecular mass of the sample.
$1mg{\text{ of }}{C_4}{H_{10}} = 14 \times N \times {10^{ - 3}}{(58)^{ - 1}} = 1.45 \times {10^{20}}$ atoms.
$1mg{\text{ of }}{N_2} = 2N \times {10^{ - 3}}{(28)^{ - 1}} = 0.43 \times {10^{20}}$ atoms.
$1mg{\text{ of }}Na = N \times {10^{ - 3}}{(23)^{ - 1}} = 0.26 \times {10^{20}}$ atoms
$1mL = 1g{\text{ of }}{H_2}O = 3N{(18)^{ - 1}} = 1 \times {10^{23}}$ atoms. (Here $N$ is Avogadro’s number)
Therefore, option (D) $1mL{\text{ of }}{H_2}O$ has the largest number of atoms.
Note:
To find the largest number of atoms we need to remember the molecular mass of the sample. The total number of atoms present in a molecule is calculated by adding up the atoms present in them and the Avogadro’s number $(N)$ is $6.02 \times {10^{23}}$.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Which of the following would not be a valid reason class 11 biology CBSE

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Trending doubts
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Which place is known as the tea garden of India class 8 social science CBSE

What is pollution? How many types of pollution? Define it

Write a letter to the principal requesting him to grant class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE
