Which one of the following statements is true?
A. If $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right).g\left( x \right)$and $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)$exist, then $\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)$exists.
B. If $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right).g\left( x \right)$exists, then $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)$and $\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)$exist.
C. If $\underset{x\to c}{\mathop{\lim }}\,\left( f\left( x \right)+g\left( x \right) \right)$and $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)$ exist, then $\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)$exist.
D. If$\underset{x\to c}{\mathop{\lim }}\,\left( f\left( x \right)+g\left( x \right) \right)$exists, then $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)$and $\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)$exist.
Answer
Verified
503.7k+ views
Hint: Use counter examples to verify the given statements. Try to make examples related with the functions modulus, greatest integer, logarithm etc. to get accurate results.
Complete step-by-step answer:
Here, we have to find a true statement from the given options. So, we will discuss from option A to D with examples. As we need to use counter examples for the given statements.
Option A. is given as
If $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right).g\left( x \right)$and $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)$exist, then $\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)$exists.
Here one counter example of the given statement is given as
$\begin{align}
& f\left( x \right)=x \\
& g\left( x \right)=[x] \\
\end{align}$
So, $f\left( x \right).g\left( x \right)=x[x]$.
And let c=0, and check for the existence of given functions.
As, $f\left( x \right)=x$ is existing at $x\to 0$ and will give$\underset{x\to 0}{\mathop{\lim }}\,x=0$.
So, $\underset{x\to 0}{\mathop{\lim }}\,f\left( x \right)$ exists.
We have$f\left( x \right).g\left( x \right)=x[x]$.
Apply limit $x\to 0$to$x[x]$.
For LHL,
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,x[x]$
Here [x] will give value ‘-1’as x is lying between (-1,0).
So, expression will become
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,x\left( -1 \right)=0$( As $x\to {{0}^{-}}$).
For RHL,
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,x[x]$
Here, [x] will give value ‘0’ as x is lying between (0,1).
Hence , we get $\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,x(0)=0(0)=0$
So, LHL=RHL for $f\left( x \right)g\left( x \right)$at $x\to 0$.
Hence, $\underset{x\to 0}{\mathop{\lim }}\,f\left( x \right).g\left( x \right)$exists.
Now, we have $g\left( x \right)=[x]$.
For LHL, we get $\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,[x]$
So, LHL=-1
For RHL, we get
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,[x]$.
So, RHL=0.
Hence, $\underset{x\to 0}{\mathop{\lim }}\,g\left( x \right)$ does not exist.
So, option A. is incorrect as here $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right).g\left( x \right)$exists and $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)$exist but $\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)$ doesn’t exist.
Option B. is given as
If $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right).g\left( x \right)$exists, then $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)$and $\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)$exist.
We can take some counter example as explained above where
$\begin{align}
& f\left( x \right)=x,g\left( x \right)=[x] \\
& f\left( x \right)g\left( x \right)=x[x] \\
\end{align}$
So, option B. is incorrect as well.
Here, option D is given as If$\underset{x\to c}{\mathop{\lim }}\,\left( f\left( x \right)+g\left( x \right) \right)$exists, then $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)$and $\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)$exist.
We can take counter example for this option as
$f\left( x \right)=\left\{ \begin{align}
& +1,x\ge 0 \\
& -1,x<0 \\
\end{align} \right.$
$g\left( x \right)=\left\{ \begin{align}
& -1,x\ge 0 \\
& +1,x<0 \\
\end{align} \right.$
where $f\left( x \right)$and $g\left( x \right)$will not exist at $x\to 0$as LHL and RHL will have different values at $x\to {{0}^{-}}$and $x\to {{0}^{+}}$ respectively.
Now, $f\left( x \right)+g\left( x \right)$is given as
$f\left( x \right)+g\left( x \right)=\left\{ \begin{align}
& 0,x\ge 0 \\
& 0,x<0 \\
\end{align} \right.$
or
$f\left( x \right)+g\left( x \right)$= 0
Which exists at $x\to 0$as $x\to {{0}^{-}}$and $x\to {{0}^{+}}$will give the same value 0.
Hence, option D. is also incorrect as$\underset{x\to c}{\mathop{\lim }}\,\left( f\left( x \right)+g\left( x \right) \right)$exists, but $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)$and $\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)$is not existing in the above example.
Therefore option C. is the correct answer from the given statements.
Note: One cannot relate$f\left( x \right)$, $g\left( x \right)$and $f\left( x \right)+g\left( x \right)$or$f\left( x \right).g\left( x \right)$for any limit $x\to c$directly.
So, taking counterexamples to these kinds of questions is the only way to find the correct answer.
One can get some examples for corrections of option A, B, C, D but statements used here are general statements. So, try to use modulus, fractional, greatest integer functions etc. to verify these kinds of statements.
Complete step-by-step answer:
Here, we have to find a true statement from the given options. So, we will discuss from option A to D with examples. As we need to use counter examples for the given statements.
Option A. is given as
If $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right).g\left( x \right)$and $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)$exist, then $\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)$exists.
Here one counter example of the given statement is given as
$\begin{align}
& f\left( x \right)=x \\
& g\left( x \right)=[x] \\
\end{align}$
So, $f\left( x \right).g\left( x \right)=x[x]$.
And let c=0, and check for the existence of given functions.
As, $f\left( x \right)=x$ is existing at $x\to 0$ and will give$\underset{x\to 0}{\mathop{\lim }}\,x=0$.
So, $\underset{x\to 0}{\mathop{\lim }}\,f\left( x \right)$ exists.
We have$f\left( x \right).g\left( x \right)=x[x]$.
Apply limit $x\to 0$to$x[x]$.
For LHL,
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,x[x]$
Here [x] will give value ‘-1’as x is lying between (-1,0).
So, expression will become
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,x\left( -1 \right)=0$( As $x\to {{0}^{-}}$).
For RHL,
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,x[x]$
Here, [x] will give value ‘0’ as x is lying between (0,1).
Hence , we get $\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,x(0)=0(0)=0$
So, LHL=RHL for $f\left( x \right)g\left( x \right)$at $x\to 0$.
Hence, $\underset{x\to 0}{\mathop{\lim }}\,f\left( x \right).g\left( x \right)$exists.
Now, we have $g\left( x \right)=[x]$.
For LHL, we get $\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,[x]$
So, LHL=-1
For RHL, we get
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,[x]$.
So, RHL=0.
Hence, $\underset{x\to 0}{\mathop{\lim }}\,g\left( x \right)$ does not exist.
So, option A. is incorrect as here $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right).g\left( x \right)$exists and $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)$exist but $\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)$ doesn’t exist.
Option B. is given as
If $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right).g\left( x \right)$exists, then $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)$and $\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)$exist.
We can take some counter example as explained above where
$\begin{align}
& f\left( x \right)=x,g\left( x \right)=[x] \\
& f\left( x \right)g\left( x \right)=x[x] \\
\end{align}$
So, option B. is incorrect as well.
Here, option D is given as If$\underset{x\to c}{\mathop{\lim }}\,\left( f\left( x \right)+g\left( x \right) \right)$exists, then $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)$and $\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)$exist.
We can take counter example for this option as
$f\left( x \right)=\left\{ \begin{align}
& +1,x\ge 0 \\
& -1,x<0 \\
\end{align} \right.$
$g\left( x \right)=\left\{ \begin{align}
& -1,x\ge 0 \\
& +1,x<0 \\
\end{align} \right.$
where $f\left( x \right)$and $g\left( x \right)$will not exist at $x\to 0$as LHL and RHL will have different values at $x\to {{0}^{-}}$and $x\to {{0}^{+}}$ respectively.
Now, $f\left( x \right)+g\left( x \right)$is given as
$f\left( x \right)+g\left( x \right)=\left\{ \begin{align}
& 0,x\ge 0 \\
& 0,x<0 \\
\end{align} \right.$
or
$f\left( x \right)+g\left( x \right)$= 0
Which exists at $x\to 0$as $x\to {{0}^{-}}$and $x\to {{0}^{+}}$will give the same value 0.
Hence, option D. is also incorrect as$\underset{x\to c}{\mathop{\lim }}\,\left( f\left( x \right)+g\left( x \right) \right)$exists, but $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)$and $\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)$is not existing in the above example.
Therefore option C. is the correct answer from the given statements.
Note: One cannot relate$f\left( x \right)$, $g\left( x \right)$and $f\left( x \right)+g\left( x \right)$or$f\left( x \right).g\left( x \right)$for any limit $x\to c$directly.
So, taking counterexamples to these kinds of questions is the only way to find the correct answer.
One can get some examples for corrections of option A, B, C, D but statements used here are general statements. So, try to use modulus, fractional, greatest integer functions etc. to verify these kinds of statements.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE