Answer
Verified
447.9k+ views
Hint: We will find the work done in all the given cases here and find out which is equal to\[1J\].
Work done by a body is calculated as the dot product of force applied to do the work and distance moved by the object. We must know that even there is application of a force, work done by a body can be positive, negative or zero.
Formula used:
\[W=F\cdot d=\left| F\cos \theta \right|\times \left| d \right|\]
Complete step by step answer:
Work done by a body is defined as the product of distance moved by the object in the direction of force applied on it. Work is energy and its S.I. unit is joule.
We will use the formula \[W=\left| F\cos \theta \right|\times \left| d \right|\]to determine the work done by each case as per given in the question. Where, \[F\] is the force applied on the body and \[d\] is the distance moved.
We can easily avoid checking if the work done by second and fourth cases is \[1J\] because the angle between the force applied and distance moved by the object in each case is given as \[90{}^\circ \]. But we know \[\cos \left( 90{}^\circ \right)=0\]. So, the work done in second and fourth cases is zero.
Now, if we consider the first case, we have \[F=1N,S=1m,\theta =0{}^\circ \]. So, the work done in this case will be
\[W=\left| F\cos \theta \right|\times \left| d \right|=1\times \cos \left( 0 \right)\times 1=1J\]
So the work done in the first case is \[1J\].
Now, if we take the third case, work done will be,
\[W=\left| F\cos \theta \right|\times \left| d \right|=0.1\times \cos \left( 0 \right)\times 1=0.1J\]
So the work done in the third case is \[0.1J\].
We got the work done in the first case as \[1J\]. So, the correct answer is option A.
Note:
We can solve this question quickly by eliminating the option in which the angle between force applied and distance travelled is given as \[90{}^\circ \]. Work done one a body could be positive, zero or negative. This anomaly arises because, if the force applied and the distance moved by the objects are in the same direction, then it will be positive. If they are in the opposite direction, work done will be negative. Now, work done will be zero if the angle between applied force and distance is \[90{}^\circ \].
Work done by a body is calculated as the dot product of force applied to do the work and distance moved by the object. We must know that even there is application of a force, work done by a body can be positive, negative or zero.
Formula used:
\[W=F\cdot d=\left| F\cos \theta \right|\times \left| d \right|\]
Complete step by step answer:
Work done by a body is defined as the product of distance moved by the object in the direction of force applied on it. Work is energy and its S.I. unit is joule.
We will use the formula \[W=\left| F\cos \theta \right|\times \left| d \right|\]to determine the work done by each case as per given in the question. Where, \[F\] is the force applied on the body and \[d\] is the distance moved.
We can easily avoid checking if the work done by second and fourth cases is \[1J\] because the angle between the force applied and distance moved by the object in each case is given as \[90{}^\circ \]. But we know \[\cos \left( 90{}^\circ \right)=0\]. So, the work done in second and fourth cases is zero.
Now, if we consider the first case, we have \[F=1N,S=1m,\theta =0{}^\circ \]. So, the work done in this case will be
\[W=\left| F\cos \theta \right|\times \left| d \right|=1\times \cos \left( 0 \right)\times 1=1J\]
So the work done in the first case is \[1J\].
Now, if we take the third case, work done will be,
\[W=\left| F\cos \theta \right|\times \left| d \right|=0.1\times \cos \left( 0 \right)\times 1=0.1J\]
So the work done in the third case is \[0.1J\].
We got the work done in the first case as \[1J\]. So, the correct answer is option A.
Note:
We can solve this question quickly by eliminating the option in which the angle between force applied and distance travelled is given as \[90{}^\circ \]. Work done one a body could be positive, zero or negative. This anomaly arises because, if the force applied and the distance moved by the objects are in the same direction, then it will be positive. If they are in the opposite direction, work done will be negative. Now, work done will be zero if the angle between applied force and distance is \[90{}^\circ \].
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE